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1. The constitutive equation 
depends on the load history.



Time-dependent behavior of tissues

•Weak time dependence of mechanical behavior 
in tendon, ligaments and bone. Stronger time 
dependence in skin, and cartilage. 

•Can one still use elastic theory anyway 
or is the predicted behavior going to be grossly 
wrong?

•Need a diagnostic test for time dependence: 
Elastic or viscoelastic? 



Study of torsional displacement of skin in vivo

Photo removed for copyright reasons.

Barbenel et al.



Stress relaxation of skin: twist skin and measure 
resulting time-dependent torque

Diagrams removed for copyright reasons.

disc and guard ring

Torque 
relaxation
from each 
displace-
ment cycle 

Barbenel et al.



Graph “Stress relaxation behavior of skin…”
removed for copyright reasons.

Barbenel et al.



Stress relaxation study of the medial collateral liga-
ment shows a clear drop in the stress measured 
at various constant strain levels. Notice use of 
logarithmic time in abscissa.

Graph removed for copyright reasons.

Provenzano et al., 2001



Stress relaxation at constant 
strain

• Test sequence: Suddenly apply a simple
deformation and measure the time-dependent 
relaxation in the stress. 

• Tensor notation typically not required for the 
simple stress fields used in testing. Below 
apply εx(t) = ε (t) and measure σx(t) = σ(t. 

• Strain applied suddenly to a constant level ε0. 
Use the Heaviside function to describe 
“switching on” or “off” of the strain.

H(t) = 0 at t < 0 and H(t) = 1 at  t ≥ 0.
• Strain “history” shows what happened to 

the strain: ε(t) = ε0H(t).



Stress relaxation test. Apply constant strain sud-
denly and maintain it at constant level 
while measuring the time-dependent stress. A 
material relaxes at a rate set by its intrinsic 
time constant, the relaxation time, τ.



Three classes of materials described below. Elastic 
solids “never” relax (τ → ∞). Viscoelastic bodies 
relax during the (arbitrary) experimental timescale, 
t (τ = intermed.). Viscous liquids relax “very fast” 
(τ → 0). Use dimensionless (t/τ) to diagnose 
“rheological” (flow) state of unknown material.



Define the stress relaxation modulus, 
Er(t)

• Apply ε0H(t).
• Measure σ(t).
• Define Er(t) = σ(t)/ε0.
• Plot data along an axis of logarithmic time 

since relaxation often proceeds over very 
long time (20 decades for amorphous 
polymers).

• Stress eventually relaxes to zero when the 
material (typically a polymer or tissue) is 
uncrosslinked. If crosslinked, stress 
relaxes to constant value (true of skin data).



Definition of Er(t)



Creep at constant stress

• This test is a mirror image of stress 
relaxation at constant strain.

• Apply suddenly a constant load, σ0: 
σ(t) = σ0H(t).

• Measure the resulting time-dependent 
strain, ε(t).

• With crosslinked materials, the strain 
eventually reached an asymptote. If 
material is uncrosslinked, the strain rises 
to very high values until the material 
becomes mechanically unstable: ε(t) = 0.



Define the creep compliance: Dc(t) = ε(t)/σ0

σ(t) = σ0H(t)



The uterine cervix before, during 
and after parturition (childbirth)

• To be born, the fetus must pass through the 
cervix, a canal made up of rather stiff tissues, 
that hardly allows easy passage of the head 
(the largest obstacle to easy passage).

• During parturition, the cervix undergoes a 
dramatic change in its mechanical behavior, 
the result of degradation of the stiff collagen 
fiber network. It changes from a solid to a 
liquid viscoelastic tissue, similar to that 
undergone when a crosslinked polymer 
network becomes degraded. 
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The complete functions

Data show the evolution of Er(t) and Dc(t) for an amorphous 
synthetic polymer over about 20 decades of logarithmic 
time.  These “master curves” can be obtained in a morning 
using time-temperature superposition.



2. Diagnostic testing for time 
dependence.

Two simple diagnostic tests:
• Define experimental time, t, and relaxation 

time, τ.
Test 1: viscoelastic if t/τ ≅ 1; elastic if t/τ « 1.

• Creep and stress relaxation experiments. 
Define time-dependent creep compliance, 
Dc(t),  and time-dependent stress relaxation 
modulus, Er(t). 

• Test 2: viscoelastic if Dc(t)· Er(t)<1; elastic if 
Dc(t)· Er(t) ≅1. 



When Dc(t)⋅Er(t)<1 the behavior is time dependent. 
Elastic behavior when Dc(t)⋅Er(t)=1. This is consistent 
with D⋅E=1 (by definition for elastic behavior).



3. Mechanical models of 
viscoelastic behavior.



Model stress relaxation behavior using 
a spring and dashpot in series

• In series arrangement of 
spring (elastic) and 
dashpot (viscous).

• The spring has an elastic 
(Hookean) modulus 
E = σH/εH.

• The dashpot has a 
Newtonian viscosity 
η = σN/(dεN/dt)

• The stresses are equal; 
• the strains are additive. 
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The relaxation time τ
observed at σ(t) = 0.37σo

σ(t) = σ0 exp (-t/τ)      



Model creep at constant stress behavior 
using a spring and dashpot in parallel

•In parallel arrangement 
of spring (elastic) and 
dashpot (viscous).
•The spring has an elastic 
(Hookean) modulus 

E = σH/εH.
•The dashpot has a 
Newtonian viscosity 

η = σN/(dεN/dt)
•The stresses are 
additive; the strains are 
equal.
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Kelvin-Voigt model.
Derivation of
equation of 
motion 
(constitutive 
equation for 
creep at constant
stress)
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The retardation time τ
observed at ε(t) = 0.63σoD

ε(t) = σ0D[1 - exp (-t/τ)]



4. Mechanical memory.



Mechanical memory of tissues
• Do tissues recover their original shape when released 

from a load? Find out by developing a general 
criterion for mechanical memory.

• The constitutive equation for a linear viscoelastic
body is written as an nth order, linear differential 
equation with constant coefficients.

• The related homogeneous equation is obtained by 
setting the stress and all its derivatives equal to zero, 
corresponding to sudden release of the load. (Roots 
of the characteristic equation. Poles.)

• A linear viscoelastic body recovers completely 
following removal of the load if the general solution of 
the homogeneous equation approaches zero as time 
becomes very long. 
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Diagnostic tests 
for rheological behavior give 
information about memory

• Use an imaginary or real Instron machine to 
identify the rheological nature of an unknown 
body. Is it a solid? a liquid? How rapidly does 
it relax?

• Stretch the body at constant extension rate, 
dε/dt = ε• = constant. For example, the 
specimen of a rigid plastic may be stretched 
at 12 inches (1 foot) per sec., about the rate at 
which we often stretch specimens in our 
hands.

• The shape of the resulting stress-strain curve 
gives out the identity of the unknown. 



Diagnostic tests 
for rheological behavior

An elastic solid is a 
Hookean spring with
σ = Eε

A Newtonian viscous 
liquid with σ = Eε•

NB. Liquid supports 
only shear stress, τ. 
Symbol σ used here for 
uniformity of presentation.



(cont.) Diagnostic tests 
for rheological
behavior.

A Kelvin-Voigt body 
has a yield stress 
and will be classified 
as a “viscoelastic
solid”.

A Maxwell body has 
no yield stress. 
Classified as a 
“viscoelastic liquid”.



Which of these rheological bodies 
shows recovery from deformation 
when the load has been removed?



5. The Boltzmann equation
(integral representation of the 

constitutive equation)



Integral representation of constitutive 
equation

The linear differential equation (LDE) 
representation lacks a ”switching” function 
(that can turn stress or strain on and off 
rapidly) which is useful in description of 
stress and strain histories as well as many 
testing modes.

To incorporate a switching function use the 
integral representation (IE) of the constitutive 
equation. Derivation of the Boltzmann integral 
follows in 4 steps.



Step 1. Various 
mathematical 
switches that depend 
on use of the Heaviside
function. These 
switches can be used 
to “cut-off” or start a 
function suddenly
at a desired time.

The Heaviside function



Step 2. Time invariance.

Dc(t) is a function 
of material structure. 
It does not vary with 
time of loading. 



“creep and recovery”

Step 3. Additivity.
The total strain 
following addition of a 
second load is the sum 
of the strains due to 
each load.

ε(t) = ε1(t) ± ε 2(t- t1) =
= σoDc(t) ± σoDc(t- t1) =
= σoD ± σoDc(t- t1) 

Taken together, time 
invariance and additivity
make up the “linearity” 
of viscoelastic behavior.



Step 4. Generalize
and integrate.
Add several stresses, 

σo, σ1, σ2, etc., one after 
another, at respective 
times θo, θ1, θ2. Sum up
strains assuming 
linearity of viscoelastic
behavior (time 
invariance and additivity).
Convert to incremental 
time intervals between 
each load addition, 
then integrate to get
Boltzmann integral. This  
is the new constitutive 
equation we looked for.
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Compare the LDE to the IE 
representation

• Even though differing in its descriptive 
power from the LDE approach, the new 
constitutive equation, in the form of an 
integral equation, provides the same 
information about the material described 
as the LDE approach. 

• In particular, the material functions are 
represented in LDE as n constants while 
being represented in IE as the “kernel” 
function of the integral, Dc(t).



6. The “weeping memory” of 
cartilage.



Application: Weeping of joint cartilage 
modeled in terms of linear 

viscoelasticity
•Joint (articular) cartilage “weeps” fluid and 
contracts in volume when loaded in uniaxial
compression (in the form of a specimen cut out 
of the intact cow tissue).
•Following removal of the compressive load, the 
specimen reswells in the fluid that had been 
expressed and expands to its original volume. 
•Analyze data by Edwards and Maroudas et al. 
using a model of weeping cartilage as if the time-
dependent deformation of a viscoelastic body 
and the mass of fluid expressed by weeping 
were mathematically identical variables.



original
fluid

Load. Fluid comes out and cartilage contracts.  

original 
fluid

Unload. Fluid re-enters and cartilage expands.



Analyze cartilage weeping and
re-expansion

• The experimental data were obtained in the 
form of mass of fluid that came out following 
loading, or re-entered in following unloading, 
the cartilage specimen. 

• Since loading of cartilage was accompanied 
by loss of mass a simple analysis of cartilage 
deformation as a linear viscoelastic “body” is 
not possible. 

• Treat the two-step experiment as if it were a 
creep and recovery cycle. Use the 
mathematical symbolism of linear visco-
elasticity to predict the kinetics of reswelling
step from knowledge of the weeping step.



Graph removed for copyright reasons.
“Figure 7. Indentation against time curves for four areas of cartilage”

Kempson et al.,1971



Graph removed for copyright reasons.
“Figure 4.8. Effect of ionic (Donnan) contribution to osmotic pressure of cartilage…”

Maroudas, 1972



Graph removed for copyright reasons.
“Curves of weight of fluid expressed versus time at different loads.”

Linn and Sokoloff, 1965



Analysis of cartilage weeping data (cont.)

• Define a new “weeping” function, W(t), as the 
ratio of time-dependent mass of fluid 
transferring in or out, m(t), and the constant 
stress, σo, acting on the specimen.

W(t) = m(t)/σo

• Make the following substitutions : 
Dc(t) → W(t) 
ε(t) → m(t)

• Assuming time invariance and additivity hold:
m(t) = σoW(t) - σoW(t – t1)



Analysis of cartilage weeping data (cont.)

• The data show that, by t = t1, the mass of 
expressed fluid had reached a constant value, 
σoW; no more fluid was weeping out. 
However, fluid started going in when the load 
was removed at t = t1.

• It follows that the mass of fluid going in 
during the swelling step can be calculated as 
follows:

m(t) = σoW - σoW(t – t1)
• The analysis agrees well with the data. We 

conclude that the weeping step can be used 
to predict the data from the swelling step.



Analyze cartilage weeping data (cont.)

Calculate swelling step data from: 
m(t) = σoW - σoW(t – t1)

weeping swelling



Summary of linear viscoelastic theory

1. Time dependence is very common during 
deformation of many tissues. Linear elasticity 
theory is not useful for lengthy loading 
experiences. Theory of linear viscoelasticity
focuses on the history of strain or stress.
2. Time dependent behavior simulated either 
using a differential equation or integral 
equation representation. 
3. Viscoelastic behavior is simply modeled 
using differential equations describing  spring-
dashpot combinations. Stress relaxation and 
creep behavior are modeled. Mechanical 
memory is also modeled in this way.



Summary (cont.)

4. Diagnostic tests for failure of elasticity are 
developed.

5. Integral equation representation of the 
constitutive equation (Boltzmann equation) 
is useful when the stress or strain are being 
switched on or off suddenly.

6. The weeping behavior of cartilage can be 
well represented using an integral equation 
representation. 


