
Calculate

ψ ψ ωẋ1 ωẋ2 � · f = 

ωx1 
+ 
ωx2 

= 0 + 0 

Pictorially


2 

1 

x 

x 

Note that the area is conserved. 

Conservation of areas holds for all conserved systems. This is conventionally 
derived from Hamiltonian mechanics and the canonical form of equations of 
motion. 

In conservative systems, the conservation of volumes in phase space is known 
as Liouville’s theorem. 

4 Damped oscillators and dissipative systems 

4.1 General remarks 

We have seen how conservative systems behave in phase space. 
What about dissipative systems? 

What is a fundamental difference between dissipative systems and conserva­
tive systems, aside from volume contraction and energy dissipation? 

• Conservative systems are invariant under time reversal. 

• Dissipative systems are not; they are irreversible. 
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Consider again the undamped pendulum: 

d2β 
+ γ2 sin β = 0. 

dt2 

Let t ∗ −t and thus ω/ωt ∗ −ω/ωt. 
There is no change—the equation is invariant under the transformation. 

The fact that most systems are dissipative is obvious if we run a movie 
backwards (ink drop, car crash, cigarette smoke...) 

Formally, how may dissipation be represented? Include terms propor­
tional to odd time derivatives., i.e., break time-reversal invariance. 

In the linear approximation, the damped pendulum equation is 

d2β dβ 
+ ρ + γ2β = 0 

dt2 dt 

where 

γ2 = g/l 

ρ = damping coefficient 

The sign of θ is chosen so that positive damping is opposite the direction of motion. 

How does the energy evolve over time? As before, we calculate 

1 
kinetic energy = ml2β̇2 

2 
�
β2 � 

potential energy = mlg(1 − cos β) mlg ◦ 
2 

where we have assumed β � 1 in the approximation. 

Summing the kinetic and potential energies, we have 

E(β, β̇) = 
1 � g

β2
� 

ml2 β̇2 + 
2 l 

1 
= ml2(β̇2 + γ2β2)

2 
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Taking the time derivative, 

dE 1 
= ml2(2β̇β ̈+ 2γ2 β̇β)

dt 2 

¨ Substituting the damped pendulum equation for β, 

dE 
= ml2[β̇(−ρβ̇ − γ2β) + γ2 β̇β]

dt 

= −ml2ρβ̇2 

Take ml2 = 1. Then 
dE 

= −ρβ̇2 

dt 
Conclusion: 

ρ = 0 Energy conserved (no friction) ∞ 

ρ > 0 friction (energy is dissipated) ∞ 

ρ < 0 energy increases without bound ∞ 

4.2 Phase portrait of damped pendulum 

Let x = β, y = β̇. 
Then 

ẋ = β̇ = y 

ẏ = β ̈= −ρβ̇ − γ2β = −ρy − γ2 x 

or � 
ẋ 
� � 

0 1 
� � 

x 
� 

= 
ẏ −γ2 −ρ y 

The eigenvalues of the system are solutions of 

(−�)(−ρ − �) + γ2 = 0 

Thus 
ρ 1� 

� = − 
2 
± 

2 
ρ2 − 4γ2 
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Assume ρ2 � γ2 (i.e., weak damping, small enough to allow oscillations). 
Then the square root is complex, and we may approximate � as 

� = − 
2 
± iγ 

The solutions are therefore exponentially damped oscillations of frequency γ: 

β(t) = β0e
−εt/2 cos(γt + θ) 

β0 and θ derive from the initial conditions. 

There are three generic cases: 

• for ρ > 0, trajectories spiral inwards and are stable. 

θ 

ρ 

θ 

• for ρ = 0, trajectories are marginally stable periodic oscillations. 

θ 

θ 

• for ρ > 0, trajectories spiral outwards and are unstable. 

θ 

θ 
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It is obvious from the phase portraits that the damped pendulum contracts 
areas in phase space: 

θ 

θ 

We quantify it using the Lie derivative, 

V 
1 d

d

V

t 
� · ψ= ψ f 

which yields 
ωẋ ωẏ

ωx 
+ 
ωy 

= 0 − ρ = −ρ < 0 

The inequality not only establishes area contraction, but ρ gives the rate. 

4.3 Summary 

Finally, we summarize the characteristics of dissipative systems: 

•	 Energy not conserved.


Irreversible.
• 

•	 Contraction of areas (volumes) in phase space. 
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Note that the contraction of areas is not necessarily simple. 

In a 2-D phase space one might expect 

θ 

θ time 

However, we can also have 

time


i.e., we can have expansion in one dimension and (a greater) contraction in 
the other. 

In 3-D the stretching and thinning can be even stranger! 
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