
16 Period doubling route to chaos 

We now study the “routes” or “scenarios” towards chaos.


We ask: How does the transition from periodic to strange attractor occur?


The question is analogous to the study of phase transitions: How does a solid

become a melt; or a liquid become a gas?


We shall see that, just as in the study of phase transitions, there are universal

ways in which systems become chaotic.


There are three universal routes:


• Period doubling 

• Intermittency 

• Quasiperiodicity 

We shall focus the majority of our attention on period doubling. 

16.1 Instability of a limit cycle 

To analyze how a periodic regime may lose its stability, consider the Poincaré 
section: 

x0 

x1 

x2 

The periodic regime is linearly unstable if 

|ψx1 − ψx0| < |ψx2 − ψx1| < . . . 
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or 
|νψx1| < |νψx2| < . . . 

Recall that, to first order, a Poincaré map T in the neighborhood of ψx0 is 
described by the Floquet matrix 

ωTi
Mij = . 

ωXj 

In a periodic regime, 
ψx(t + φ) = ψx(t). 

But the mapping T sends 

ψx0 + νψx ∗ ψx0 + Mνψx. 

Thus stability depends on the 2 (possibly complex) eigenvalues �i of M . 

If �i > 1, the fixed point is unstable. | | 

There are three ways in which �i > 1:| | 

λi 

λiRe 

Im 

+1−1 

1. � = 1 + π, π real, π > 0. νψx is amplified is in the same direction:


x1
x2 x3 

x4 

This transition is associated with Type 1 intermittency. 

2. � = −(1 + π). νψx is amplified in alternating directions: 

x3 x1
x0 x2 

This transition is associated with period doubling. 
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3. � = � ± iλ = (1 + π)e±iε . |νψx| is amplified, νψx is rotated: 

x0 

1 

2 

34 

γγγ 

This transition is associated with quasiperiodicity. 

In each of these cases, nonlinear effects eventually cause the instability to

saturate.


Let’s look more closely at the second case, � ◦ −1.


Just before the transition, � = −(1 − π), π > 0.


Assume the Poincaré section goes through x = −0. Then an initial pertur­

bation x0 is damped with alternating sign:


x1 
x3 0 x2 x0 

Now vary the control parameter such that � = −1. The iterations no longer 
converge: 

x1 
0 x0 

x3 
x2 

We see that a new cycle has appeared with period twice that of the original 
cycle through x = 0. 

This is a period doubling bifurcation. 

16.2 Logistic map 

We now focus on the simplest possible system that exhibits period doubling. 
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In essence, we set aside n-dimensional (n √ 3) trajectories and focus only on 
the Poincaré section and the eigenvector whose eigenvalue crosses (−1). 

Thus we look at discrete intervals T, 2T, 3T, . . . and study the iterates of a 
transformation on an axis. 

We therefore study first return maps 

xk+1 = f(xk) 

and shall argue that these maps are highly relevant to n-dimensional flows. 

For clarity, we adopt a biological interpretation. 

Imagine an island with an insect population that breeds in summer and leaves 
egges that hatch the following summer. 

Let xj = ratio of actual population in jth summer to some reference popula­
tion. 

Assume that next summer’s population is determined by this summer’s pop­
ulation according to 

2 xj+1 = rxj − sxj . 

The term rxj+1 represents natural growth; if r > 1 the population grows 
(exponentially) by a factor r each year. 

The term sxj 
2 represents a reduction of natural growth due to crowding and 

competition for resources. 

Now rescale xj ∗ (r/s)xj. Then 

2 xj+1 = rxj − rx j . 

Set r = 4µ: 
xj+1 = 4µxj(1 − xj). 

This is called the logistic map. 
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16.3 Fixed points and stability 

We seek the long-term dependence of xj on the control parameter µ. Re­

markably, we shall see that µ plays a role not unlike that of the Rayleigh 
number in thermal convection. 

So that 0 < xj < 1, we consider the range 

0 < µ < 1. 

Recall that we have already discussed the graphical interpretation of such 
maps. Below is a sketch for µ = 0.7: 

x k+
1
= x k 

f(x0) = 

x0 x1 

x1 

1 

1 

x 

f(x) 

f(x) 

1−1/(4µ)0 

The fixed points solve 

x� = f(x�) = 4µx�(1 − x�), 

which yields 
1 

x� = 0 and x� = 1 − 
4µ
, 

where the second fixed point exists only for µ > 1/4. 

Recall that stability requires 

|f ∗(x�)| < 1 =∞ |4µ(1 − 2x�)| < 1. 
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The stability condition for x� = 0 is therefore 

µ < 1/4. 

The non-trivial fixed point, x� = 1 − 1/(4µ), is stable for 

1/4 < µ < 3/4. 

The long-time behavior of the insect population x for 0 < µ < 3/4 then looks 
like 

16.4 Period doubling bifurcations 

What happens for µ > 3/4? 

At µ = 3/4, x� = 1 − 1/(4µ) is marginally stable. Just beyond this point, 
the period of the asymptotic iterates doubles: 

x1 x2 x 
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x*=0 

1 

x *=1−1/(4µ) 

* 1 

1 

f(x) 

* 



Let’s examine this transition more closely. First, look 
at both f(x) and f 2(x) = f

�
f(x)

� 
just before the 

transition, at µ = 0.7. 

•	 Since f(x) is symmetric about x = 1/2, so is

f 2(x).


•	 If x� is a fixed point of f(x), x� is also a fixed

point of f 2(x).


We shall see that period doubling depends on the 
relationship of the slope of f 2(x�) to the slope of 
f(x�). 

Feigenbaum, Fig. 2. 

The two slopes are related by the chain rule. By definition, 

x1 = f(x0), x2 = f(x1) = x2 = f 2(x0).∞ 

Using the chain rule, 

f 2∗(x0) = 
d 
f
�
f(x)

��
� 

dx x0 

= f ∗(x0) f
∗�f(x0)

� 

= f ∗(x0) f
∗(x1) 

Thus, in general, 

fn∗(x0) = f ∗(x0) f
∗(x1) . . . f

∗(xn−1).	 (32) 

Now, suppose x0 = x�, a fixed point of f . Then 

x1 = x0 = x� 

and 
f 2∗(x�) = f ∗(x�) f ∗(x�) = |f ∗(x�)| 2 . 
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For the example of µ < 3/4,


|f ∗(x�)| < 1 =∞ |f 2∗(x�)| < 1.


Moreover, if we start at x0 = 1/2, the extremum of f , then equation (32) 
shows that 

f ∗(1/2) = 0 =∞ f 2
∗
(1/2) = 0 

= x = 1/2 is an extremum of f 2 .∞ 

Equation (32) also shows us that f 2 has an extremum at the x0 that iterates, 
under f , to x = 1/2. These inverses of x = 1/2 are indicated on the figure 
for µ = 0.7. 

What happens at the transition, where µ = 3/4? 

At µ = 3/4, 

f ∗(x�) = −1 =∞ f 2(x�) = 1. 

Therefore f 2(x�) is tangent to the identity map. 

Feigenbaum, Fig. 3, µ = 0.75. 

Just after the transition, where µ > 3/4, the peaks of f 2 

increase, the minimum decreases, and 

|f ∗(x�)| > 1 =∞ |f 2∗(x�)| > 1. 

f 2 develops 2 new fixed points, x�1 and x�2, such that 

x1
� = f(x2

�), x2
� = f(x�1).


We thus find a cycle of period 2. The cycle is stable because


|f 2∗(x�1)| < 1 and |f 2∗(x�2)| < 1.


Feigenbaum, Fig. 4, µ = 0.785. 
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Importantly, the slopes at the fixed points of f 2 are equal: 

f 2∗(x�1) = f 2∗(x�2).


This results trivially from equation (32), since the period-2 oscillation gives


f 2∗(x1
�) = f ∗(x�1) f

∗(x2
�) = f ∗(x�2) f

∗(x1
�) = f 2∗(x�2).


In general, if x�1, x2
�, . . . , x�n is a cycle of period n, such that 

f(x�rx�+1 = 

x�1 

r ), r = 1, 2, . . . , n − 1


f(x�

x� = fn(x�

n

nis a fixed point of f : 

r

(x�

(x�

r 

r

r

and
 )
=


then each x�

and the slopes f n

r

), r = 1, 2, . . . , n


∗ ) are all equal:


�(xn

This slope equality is a crucial observation: 

•	 Just as the sole fixed point x� of f(x) gives rise to 2 stable fixed points 
x�1 and x2

� of f 2(x) as µ increases past µ = 3/4, both x�1 and x2
� give rise 

to 2 stable fixed points of f 4(x) = f 2
�
f 2(x)

� 
as µ increases still further. 

•	 The period doubling bifurcation derives from the equality of the fixed 
points—because each fixed point goes unstable for the same µ. 

We thus perceive a sequence of bifurcations at increasing values of µ. 

At µ = µ1 = 3/4, there is a transition to a cycle of period 21 . 

Eventually, µ = µ̄1, where the 21-cycle is superstable, i.e., 

f 2∗(x1
�) = f 2∗(x�2) = 0. 

At µ = µ2, the 2-cycle bifurcates to a 22 = 4 cycle, and is superstable at 
µ = µ̄2. 
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We thus perceive the sequence 

µ1 < µ̄1 < µ2 < µ̄2 < µ3 < . . . 

where 

•	µn = value of µ at transition to a cycle of period 2n . 

•	 µ̄n = value of µ where 2n cycle is superstable. 
Note that one of the superstable fixed points is always at x = 1/2. 

µ = µ̄1, superstable 2-cycle 

(Feigenbaum, Fig. 5). 

µ = µ2, transition to period 4 

(Feigenbaum, Fig. 6). 
µ = µ̄2, superstable 4-cycle 

(Feigenbaum, Fig. 7). 

Note that in the case µ = µ̄2, we consider the fundamental function to be f2, 
and its doubling to be f 4 = f 2(f 2). 

In general, we are concerned with the functional compositions 

f 2n+1 
= f 2n �

f 2n � 
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� 

�

Cycles of period 2n+1 are always born from the instability of the fixed points 
of cycles of period 2n . 

Period doubling occurs ad infinitum. 

16.5 Scaling and universality 

The period-doubling bifurcations obey a precise scaling law. 

Define 

µ = value of µ when the iterates become aperiodic 

= 0.892486 . . . (obtained numerically, for the logistic map). 

There is geometric convergence: 

µ� − µn ≥ ν−n for large n. 

That is, each increment in µ from one doubling to the next is reduced in size 
by a factor of 1/ν, such that 

νn = 
µn+1 − µn ∗ ν for large n. 
µn+2 − µn+1 

The truly amazing result, however, is not the scaling law itself, but that 

ν = 4.669 . . . 

is universal, valid for any unimodal map with quadratic maximum. 

“Unimodal” simply means that the map goes up and then down. 

The quadratic nature of the maximum means that in a Taylor expansion of 
f(x) about xmax, i.e., 

π2 

f(xmax + π) = f(xmax) + πf ∗(xmax) + f ∗∗(xmax) + . . . 
2 

the leading order nonlinearity is quadratic, i.e., 

f ∗∗(xmax) = 0. 
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(There is also a relatively technical requirement that the Schwartzian derivative of f must be 

negative over the entire interval (Schuster)) 

This is an example of universality: if qualitative properties are present to 
enable periodic doubling, then quantitative properties are predetermined. 

Thus we expect that any system—fluids, populations, oscillators, etc.— whose 
dynamics can be approximated by a unimodal map would undergo period 
doubling bifurcations in the same quantitative manner. 

How may we understand the foundations of this universal behavior? 

Recall that 

the 2n-cycle generated by f 2
n 

is superstable at µ = µ̄n;• 

• superstable fixed points always include x = 1/2; and 

• all fixed points have the same slope. 

Therefore an understanding f 2
n 

near its extremum at x = 1/2 will suffice to 
understand the period-doubling cascade. 

To see how this works, consider fµ̄1 (x) and fµ̄
2 
2 
(x) (top of Figures 5 and 7). 

The parabolic curve within the dashed (red) square, for fµ̄
2 
2 
(x) looks just like 

fµ̄1 (x), after 

• reflection through x = 1/2, y = 1/2; and 

• magnification such that the squares are equal size. 

The superposition of the first 5 such functions 
(f, f 2, f 4, f 8, f 16) rapidly converges to a single func­
tion. 

Feigenbaum, Figure 8. 

161




µ1 µ1 µ2 µ2 

d1 

d2 

1/2 

1 

µ 

x 

Thus as n increases, a progressively smaller and smaller region near f ’s max­
imum becomes relevant—so only the order of the maximum matters. 

The composition of doubled functions therefore has a “stable fixed point” in the space of functions, 

in the infinite period-doubling limit. 

The scale reduction is based only on the functional composition 

f 2n+1 
= f 2n �

f 2n � 

which is the same scale factor for each n (n large). 

This scale factor converges to a constant. What is it? 

The bifurcation diagram looks like 

Define dn = distance from x = 1/2 to nearest value of x that appears in the 
superstable 2n cycle (for µ = µ̄n). 

From one doubling to the next, this separation is reduced by the same scale 
factor: 

dn 

dn+1 
◦ −�. 

The negative sign arises because the adjacent fixed point is alternately greater 
than and less than x = 1/2. 

We shall see that � is also universal: 

� = 2.502 . . . 
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16.6 Universal limit of iterated rescaled f ’s 

How may we describe the rescaling by the factor �? 

For µ = µ̄n, dn is the 2n−1 iterate of x = 1/2, i.e., 

dn = fµ̄
2
n

n−1 
(1/2) − 1/2. 

For simplicity, shift the x axis so that x = 1/2 ∗ x = 0. Then 

dn = fµ̄
2
n

n−1 
(0). 

The observation that, for n � 1, 

dn 
= lim (−�)ndn+1 ∈ rn converges. 

dn+1 
◦ −� ∞ 

n�� 

Stated differently, 

lim (−�)nf 2n 
(0) must exist. µ̄n+1n�� 

Our superposition of successive plots of f 2
n 

suggests that this result may be 
generalized to the whole interval. 

Thus a rescaling of the x-axis describes convergence to the limiting function 
⎡ � 

g1(x) = lim (−�)nf 2n x
.µ̄n+1n�� (−�)n 

Here the nth interated function has its argument rescaled by 1/(−�)n and 
its value magnified by (−�)n . 

The rescaling of the x-axis shows explicitly that only the behavior of fµ̄
2
n

n 

+1 

near x = 0 is important. 

Thus g1 should be universal for all f ’s with quadratic maximum. 

• Figure 5 (top), at µ̄1, is g1 for n = 0. 

• Figure 7 (top), at µ̄2, when rescaled by �, is g1 for n = 1. 
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• g1 for n large looks like (Feigenbaum, Figure 9) 

The function g1 is the universal limit of interated and rescaled f ’s. Moreover, 
the location of the elements of the doubled cycles (the circulation squares) is 
itself universal. 

16.7 Doubling operator 

We generalize g1 by introducing a family of functions 
⎡ � 

gi = lim (−�)nfµ
2
n

n 

+i 

x
, i = 0, 1, . . . (33)¯

n��	 (−�)n 

Note that 
⎡ � 

gi−1 =	 lim (−�)nf¯
2n x


n�� µn+i−1 (−�)n


(−�)(−�)n−1f 2n−1+1 

⎡ 
1 x 

� 

= lim µ̄n−1+in��	 (−�) (−�)n−1 

Set m = n − 1. Then 

f 2n−1+1 
= f 2m+1 

= f 2m �
f 2m � 
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�


�
 � 

�
 �� 

�
 �� 

�


�
 �� 

and

⎟ 
⎨⎨⎨⎠


⎩ 
⎨⎨⎨⎦
⎡


1
 1 x

gi−1 = lim 

m�� 
(−�)(−�)mf 2m 

µ̄m+i 
(−�)mf 2m 

µ̄m+i(−�)m (−�) (−�)m 
⎜�

⎨⎨⎨⎧

⎨⎨⎨⎫ 

gi( 
−

x
� ) 

⎡

x 

= −�gi gi −� 

We thus define the doubling operator T such that 
⎡


x 
gi−1(x) = T gi(x) = −�gi gi −� 

Taking the limit i ∗ →, we also define 

g(x) lim gi(x)∈ 
i�� 

⎡


= lim (−�)nf 2n x 
n�� µ̄� (−�)n 

We therefore conclude that g is a fixed point of T : 
⎡


x 
g(x) = T g(x) = −�g g . (34) −� 

g(x) is the limit, as n ∗ →, of rescaled f 2
n 
, evaluated for µ�. 

Whereas g is a fixed point of T , Tgi, where i is finite, interates away from g. 

Thus g is an unstable fixed point of T . 

16.8 Computation of � 

To determine �, first write 

g(0) = −�g [g(0)] . 

We must set a scale, and therefore set 

g(0) = 1 =∞ g(1) = −1/�. 
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� 

There is no general theory that can solve equation (34) for g. 

We can however obtain a unique solution for � by specifying the nature 
(order) of g’s maximum (at zero) and requiring that g(x) be smooth. 

We thus assume a quadratic maximum, and use the short power law expansion 

g(x) = 1 + bx2 . 

Then, from equation (34), 
� 

bx2 � 

g(x) = 1 + bx2 = −�g 1 + 
�2 

� � 
bx2 �2

� 

= −� 1 + b 1 + 
�2 

= −�(1 + b) − 
2b2 

x 2 + O(x 4) 

Equating terms, 

� = 
−1 

, � = −2b 
1 + b

which yields, 

−2 ±
�

12 
b = ◦ −1.366 (neg root for max at x = 0) 

4 

and therefore 
� 2.73,◦ 

which is within 10% of Feigenbaum’s � = 2.5028 . . ., obtained by using terms 
up to x14 . 

16.9 Linearized doubling operator 

We shall see that ν determines how quickly we move away from g under 
application of the doubling operator T . 

In essence, we shall calculate the eigenvalue that corresponds to instability 
of an unstable fixed point. 
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µ� 

�

µ� µ� 

Thus our first task will be to linearize the doubling operator T . ν will then 
turn out to be one of its eigenvalues. 

We seek to predict the scaling law 

µ̄n − µ̄� ≥ ν−n , 

now expressed in terms of µ̄i rather than µi. 

We first expand fµ̄(x) around fµ̄� (x): 

fµ̄(x) ◦ fµ̄� (x) + (µ̄ − µ̄�) νf(x), 

where the incremental change in function space is given by 

ωfµ̄(x)�
� 

νf(x) = � 
ωµ̄ �

µ̄� 

Now apply the doubling operator T to fµ̄ and linearize with respect to νf : 
⎡ � �� 

x

Tfµ̄ = −�fµ̄ fµ̄
 −�


⎡ � � � �� 
x x ◦ −� [fµ̄� + (µ̄ − µ̄�) νf ] ∝ f¯ −� 

+ (µ̄ − µ̄�) νf −� 

= Tfµ̄� + (µ̄ − µ̄�)Lfµ̄� 
νf + O(νf 2) 

where Lf is the linearized doubling operator defined by 
� ⎡ � �� � � ⎡ � ��� 

x x x 
Lf νf = −� f ∗ f νf + νf f . (35) −� −� −� 

The first term on the RHS derives from an expansion like g[f(x)+ �f(x)] � g[f(x)]+ g �[f(x)]�f(x). 

A second application of the doubling operator yields 

T 
�
T (fµ̄)

� 
= T 2fµ̄� + (µ̄ − µ̄ )LTfµ̄� 

Lfµ̄� 
νf + O

�
(νf)2

� 
. 

Therefore n applications of the doubling operator produce 

T nfµ̄ = T nfµ̄� + (µ̄ − µ̄ ) LT n−1f¯
Lf¯

νf + O
�
(νf)2

� 
. (36)� · · · 
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�

� 

� 

� 

� 

�

For µ̄ = µ̄ , we expect convergence to the fixed point g(x): 
⎡ � 

T nf¯ = (−�)nf 2n 

(−
x

�)n 
◦ g(x),µ� µ̄� 

n � 1. 

Substituting g(x) into equation (36) and assuming, similarly, that LTfµ̄� 
◦

Lg, 
T nfµ̄(x) ◦ g(x) + (µ̄ − µ̄�) Ln

g νf(x), n � 1. (37) 

We simplify by introducing the eigenfunctions θ� and eigenvalues �� of Lg: 

Lgθ� = �� θ� , � = 1, 2, . . . 

Write νf as a weighted sum of θ� : 

νf = c� θ� 

Thus n applications of the linear operator Lg may be written as 

Ln
g νf = �n

� c� θ� . 

Now assume that only one of �� is greater than one: 

�1 > 1, �� < 1 for � = 1. 

(This conjecture, part of the original theory, was later proven.) 

Thus for large n, �1 dominates the sum, yielding the approximation 

Ln
g νf ◦ �n 

1 c1θ1, n � 1. 

We can now simplify equation (36): 

T nfµ̄(x) = g(x) + (µ̄ − µ̄ ) νn a h(x), n � 1� · · · 

where 
ν = �1, a = c1, and h(x) = θ1. 

Now note that when x = 0 and µ̄ = µ̄n, 

T nf¯ (0) = g(0) + (¯ µ ) νn a h(0).µn µn − ¯� · · · 
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Recall that x = 0 is a fixed point of fµ̄
2
n

n 
(due to the x-shift). Therefore 

T nf¯ (0) = (−�)nf 2n 
(0) = 0.µn µ̄n 

Recall also that we have scaled g such that g(0) = 1. We thus obtain the 
Feigenbaum scaling law: 

lim (µ̄n − µ̄�) νn = 
a 
−
h

1

(0) 
= constant! 

n�� · 

16.10 Computation of ν 

Recall that ν is the eigenvalue that corresponds to the eigenfunction h(x). 

Then applying the linearized doubling operator (35) to h(x) yields 
� ⎡ � �� � � ⎡ � ��� 

x x x 
Lgh(x) = −� g∗ g h + h g −� −� −� 

= ν h(x).· 

Now approximate h(x) by h(0), the first term in a Taylor expansion about 
x = 0. 

Seting x = 0, we obtain 

−� {g∗ [g(0)] h(0) + h [g(0)]} = ν h(0).· 

Note that the approximation 

h(x) h(0) = h[g(0)] = h(1) h(0).◦ ∞ ◦ 

Thus h(0) cancels in each term and, recalling that g(0) = 1, 

−� [g∗(1) + 1] = ν. (38) 
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�

� 

To obtain g∗(1), differentiate g(x) twice: 
⎡ � �� 

g(x) = −�g g −x 

g∗(x) = −� 

� 

g∗ 
⎡ 

g 

�−
�

x 
�� 

· 
�−
� 
1
� 

g∗ 
�−
�

x 
�� 

� ⎡ � ��⎡ � ��2 ⎡ � �� � �� 
x 

g∗∗(x) = 
−1 

g∗∗ g g∗ 
−x 

+ g∗ g 
−x

g∗∗ 
−x 

� −� � � � 

Substitute x = 0. Note that 

g∗(0) = 0 and g∗∗(0) = 0 

because we have assumed a quadratic maximum at x = 0. Then 

g∗∗(0) = 
−1

[g∗(1)g∗∗(0)] . 

Therefore 
g∗(1) = −�. 

Substituting into equation (38), we obtain 

ν = �2 − � . 

This result derives from the crude approximation h(0) = h(1). Better approximations yield greater 

accuracy (Feigenbaum, 1979).) 

Recall that we previously estimated � 2.73. Substituting that above, we ◦
obtain 

ν 4.72,◦ 

which is within 1% of the exact value ν = 4.669 . . .. 

16.11 Comparison to experiments 

We have established the universality of � and ν: 
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reduced by α 

reduced by δ 

These quantitative results hold if a qualitative condition—the maximum of f 
must be locally quadratic—holds. 

At first glance this result may appear to pertain only to mathematical maps. 
However we have seen that more complicated systems can also behave as if 
they depend on only a few degrees of freedom. Due to dissipation, one may 
expect that a one-dimensional map is contained, so to speak, within them. 

The first experimental verification of this idea was due to Libchaber, in a 
Rayleigh-Bénard system. 

As the Rayleigh number increases beyond its critical value, a single convection 
roll develops an oscillatory wave: 

probe 

Ra=Ra c Ra>Ra c 

A probe of temperature X(t) is then oscillatory with frequency f1 and period 
1/f1. 

Successive increases of Ra then yield a sequence of period doubling bifurca­
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tions at Rayleigh numbers 

Ra1 < Ra2 < Ra3 < . . . 

The experimental results are shown in 

BPV, Figure VIII.13a and VIII.13b .


Identifying Ra with the control parameter µ in Feigenbaum’s theory, Libcha­
ber found 

ν 4.4◦ 

which is amazingly close to Feigenbaum’s prediction, ν = 4.669 . . .. 

Such is the power of scaling and universality! 
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