
14 Fractals 

We now proceed to quantify the “strangeness” of strange attractors. There 
are two processes of interest, each associated with a measurable quantity: 

• sensitivity to initial conditions, quantified by Lyaponov exponents. 

• repetitive folding of attractors, quantified by the fractal dimension. 

Now we consider fractals, and defer Lyaponov exponents to the next lecture. 

We shall see that the fractal dimension can be associated with the effective 
number of degrees of freedom that are “excited” by the dynamics, e.g., 

• the number of independent variables; 

• the number of oscillatory modes; or 

• the number of peaks in the power spectrum 

14.1 Definition 

Consider an attractor A formed by a set of points in a p-dimensional space: 

etc 

ε 

We contain each point within a (hyper)-cube of linear dimension π. 

Let N(π) = smallest number of cubes of size π needed to cover A. 

Then if 
N(π) = Cπ−D , as π ∗ 0, C = const. 

then D is called the fractal (or Hausdorf ) dimension. 
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Solve for D (in the limit π ∗ 0): 

ln N(π) − ln C 
D = . 

ln(1/π) 

Since ln C/ ln(1/π) ∗ 0 as π ∗ 0, we obtain the formal definition 

ln N(π)
D = lim . 

ν�0 ln(1/π) 

14.2 Examples 

Suppose A is a line segment of length L: 

L 

Then the “boxes” that cover A are just line segments of length π, and it is 
obvious that 

N(π) = Lπ−1 = D = 1.∞ 

Next suppose A is a surface or area S. Then 

N(π) = Sπ−2 = D = 2.∞ 

But we have yet to learn anything from D.


Consider instead the Cantor set. Start with a unit line segment:


0 1 

The successively remove the middle third: 

0 1/3 2/3 1 

1/9 2/9 

etc etc 
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� � 

Note that the structure is scale-invariant: from far away, you see the middle 
1/3 missing; closer up, you see a different middle 1/3 missing. 

The effect is visually similar to that seen in the Lorenz, Hénon, and Rössler 
attractors. 

The fractal dimension of the Cantor set is easily calculated from the definition 
of D: 

� 
1
� 

Obviously, N π = = 2 
3 
1 

Then N π = = 4 
9 

� 
1 
� 

N = 8 . . . 
27 

Thus � 
1 
� 

N = 2m . 
3m 

Taking π = 1/3 and using the definition of D, 

ln 2m ln 2 
D = lim = 0.63 

m�� ln 3m ln 3 
◦ 

14.3 Correlation dimension � 

We proceed now to an alternative procedure for the calculation of the fractal 
dimension, which offers additional (physical) insight. 

Rather than calculating the fractal dimension via its definition, we calculate 
the correlation dimension �. 

We shall show that � ∼ D. But first we define it. 

14.3.1 Definition 

Consider a set of points distributed on a plane. 
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Let N(r) = number of points located inside a circle of radius r. 

Assume the points are uniformly distributed on a curve like 

r 

For r sufficiently small compared to the curvature of the curve, we have 

N(r) ≥ r 

or 
N(r) ≥ r � , � = 1. 

Now assume the points are uniformly distributed along a surface in two di­
mensions: 

r 

Now 
= � = 2.N(r) ≥ r 2 ∞ 

Next, reconsider the Cantor set: 

r 

We expect that N(r) will grow more slowly than r.


Indeed, calculations show that � 0.63 = D, just as before.
◦ 
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� 

14.3.2 Computation 

Our implicit definition of � is clearly generalized by considering 

• an attractor in a p-dimensional space, and 

• N(r) = number of points in a p-dimensional hypersphere of radius r. 

For a time series x(t), we reconstruct a p-dimensional phase space with the 
coordinates 

x(t), x(t + φ), x(t + 2φ), . . . x(t + (p − 1)φ) = ψx(t). 

Suppose there are m points on the attractor. We quantify the spatial corre­
lation of these points by defining 

1 
C(r) = lim 

m2 
(number of pairs i, j for which |ψxi − ψxj| < r) . 

m�� 

More formally, 

m m
1 �� 

C(r) = lim H(r − ψxi − ψxj ) 
m�� m2 

i j 

| |

where 
1 x > 0 

H(x) = 
0 else. 

The summation is performed by centering hyperspheres on each of the m 
points. 

In practice, one embeds the signal x(t) in a phase space of dimension p, for 

p = 2, 3, 4, 5, . . . 

p is called the embedding dimension. 

For each p, we calculate C(r). Then, assuming 

C(r) = r � 
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we plot log C vs. log r and estimating the slope �:


Consider the example of white noise. Then x(t) is a series of uncorrelated 
random numbers, and we expect 

C(r) ≥ rp, p = embedding dimension. 

Graphically, one expect a series of plots like 

log r 

Here 
�(p) = p, 

a consequence of the fact that white noise has as many degrees of freedom 
(i.e., independent “modes”) as there are data points. 

Consider instead X(t) = periodic function, i.e., a limit cycle, with only one 
fundamental frequency. 

Then the attractor looks like 

slope = ν 

log r 

log C(r) 

log C(r) 

p= 4 532 

p=2 p=3 
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Provided that r is sufficiently smaller than the curvature of the limit cycle, 
we expect 

C(r) ≥ r 1 , for p = 2, 3, 4, . . . 

Graphically, we obtain 

log r 

log C(r) 

p= 2 3 4 5 

and therefore 
�(p) = 1, independent of p. 

We conclude that � measures something related to the “number of degrees 
of freedom” needed to parameterize an attractor. 

Specifically, suppose a dynamical regime has n oscillatory modes. The at-
tractor is then a torus T n, and we expect 

C(r) ≥ r n . 

Thus 
p ∼ n =∞ C(r) ≥ rp 

and 
p > n =∞ C(r) ≥ r n , independent of p. 

Conclusion: If, for embedding dimensions p √ p0, � is independent of p, 
then � is the number of degrees of freedom excited by the system. 

This conclusion provides for an appealing conjecture: since white noise gives 

�(p) = p,


� independent of p (and reasonably small) implies that the signal is deter­
ministic, and characterizable by �� variables. 
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(There are some practical limitations: 

• r must be small compared to the attractor size. 

• r and m must be large enough for reasonable statistics.) 

14.4 Relationship of � to D 

(Grassberger and Procaccia, Physica 9D, 183 (1983)) 

The correlation dimension is not strictly the same as the fractal dimension, 
however it can be. We now derive their mathematical relation. 

Suppose we cover an attractor A with N(r) hypercubes of size r. 

If the points are uniformly distributed on A, the probability that a point falls 
into the ith hypercube is 

pi = 1/N(r). 

By definition, for an attractor containing m points, 
m m �

1 �� 1 x > 0 
C(r) = lim H(r − ψxi − ψxj ), H(x) = 

2m�� m
i j 

| |
0 else 

C(r) measures the number of pairs of points within a distance r of each other. 
In a box of size r, there are on average mpi points, all within the range r. 
Therefore, within a factor of O(1) (i.e., ignoring box boundaries and factors of two arising 

from counting pairs twice), 
N(r) 

C(r)
1 

2 

� 
(mpi)

2 ◦ 
m

i=1 

N(r) 
� 

2 = pi 
i=1 

Then, using angle brackets to represent mean quantities, we have, from 
Schwartz’s inequality, 

1 
C(r) = N(r) ⇒pi 

2 ≡ √ N(r) ⇒pi≡ 2 = 
N(r) 

. 
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If the attractor has fractal dimension D, then 

N(r) ≥ r−D , r ∗ 0. 

The definition of the correlation dimension �, on the other hand, gives 

C(r) ≥ r � . 

Substituting these relations into both sides of the inequality, we find 

� D r √ r 

Thus as r ∗ 0, we see that 
� ∼ D 

The equality is obtained when p2 2 .⇒ i ≡ = ⇒pi≡

Thus � < D results from non-uniformity of points on the attractor. 
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