
11 Lorenz equations 

In this lecture we derive the Lorenz equations, and study their behavior. 

The equations were first derived by writing a severe, low-order truncation of 
the equations of R-B convection. 

One motivation was to demonstrate SIC for weather systems, and thus point 
out the impossibility of accurate long-range predictions. 

Our derivation emphasizes a simple physical setting to which the Lorenz 
equations apply, rather than the mathematics of the low-order truncation. 

See Strogatz, Ch. 9, for a slightly different view. This lecture derives from Tritton, Physical Fluid 

Dynamics, 2nd ed. The derivation is originally due to Malkus and Howard. 

11.1 Physical problem and parameterization 

We consider convection in a vertical loop or torus, i.e., an empty circular 
tube: 

cold 

hot 

g 

We expect the following possible flows: 

• Stable pure conduction (no fluid motion) 

• Steady circulation 

• Instabilities (unsteady circulation) 
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The precise setup of the loop:


T0−T1 (external) 

(T0+T3 

T +T20 

T0+T1 (external) 

z 

(T0−T3) ) 

T0−T2 

q 
a φ 

g 

θ = position round the loop. 

External temperature TE varies linearly with height: 

TE = T0 − T1z/a = T0 + T1 cos θ (24) 

Let a be the radius of the loop. Assume that the tube’s inner radius is much 
smaller than a. 

Quantities inside the tube are averaged cross-sectionally: 

velocity = q = q(θ, t) 

temperature = T = T (θ, t) (inside the loop) 

As in the Rayleigh-Bénard problem, we employ the Boussinesq approximation 
(here, roughly like incompressiblity) and therefore assume 

ωδ 
= 0. 

ωt 

Thus mass conservation, which would give � · ψu in the full problem, here 
gives 

ωq 
= 0. (25)

ωθ 
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Thus motions inside the loop are equivalent to a kind of solid-body rotation, 
such that 

q = q(t). 

The temperature T (θ) could in reality vary with much complexity. Here we 
assume it depends on only two parameters, T2 and T3, such that 

T − T0 = T2 cos θ + T3 sin θ. (26) 

Thus the temperature difference is 

• 2T2 between the top and bottom, and 

• 2T3 between sides at mid-height. 

T2 and T3 vary with time: 

T2 = T2(t), T3 = T3(t) 

11.2 Equations of motion 

11.2.1 Momentum equation 

Recall the Navier-Stokes equation for convection: 

ωψu 1 
+ ψu ψ ψ g�ΓT + �� 2ψu 

ωt 
· �ψu = −

δ
�p − ψ

We write the equivalent equation for the loop as 

ωq 1 ωp 
+ g�(T − T0) sin θ − �q. (27)= −

ωt δa ωθ 

The terms have the following interpretation: 

• ψu ∗ q 

• ψu · �ψu ∗ 0 since ωq/ωθ = 0. 

111 



�
�
�
�


•	�p ∗ 1 γp by transformation to polar coordinates. a γπ 

•	 A factor of sin θ modifies the buoyancy force F = g�(T − T0) to obtain 
the tangential component: 

φ φ 

F 
Fsinφ 

The sign is chosen so that hot fluid rises. 

•	 � is a generalized friction coefficient, corresponding to viscous resistance 
proportional to velocity. 

Now substitute the expression for T − T0 (equation (26)) into the momentum 
equation (27): 

ωq 1 ωp 
+ g�(T2 cos θ + T3 sin θ) sin θ − �q= −

ωt δa ωθ 

Integrate once round the loop, with respect to θ, to eliminate the pressure 
term: 

2α
ωq 

= g� 
� 2� 

(T2 cos θ sin θ + T3 sin
2 θ)dθ − 2α�q. 

ωt 0 

The pressure term vanished because 
�	 2� ωp 

dθ = 0,
ωθ 0 

i.e., there is no net pressure gradient around the loop. 

The integrals are easily evaluated: 
� 2�	 2�

1 
cos θ sin θ dθ = sin2 θ = 0 

20	 0 

and �	 2� 

sin2 θ dθ = α. 
0 
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Then, after dividing by 2α, the momentum equation is 

dq g�T3 
= −�q + (28)

dt 2 
where we have written dq/dt instead of ωq/ωt since ωq/ωθ = 0. 

We see that the motion is driven by the horizontal temperature difference, 
2T3. 

11.2.2 Temperature equation 

We now seek an equation for changes in the temperature T . The full tem­

perature equation for convection is 

ωT ψ+ ψu �T = τ� 2T 
ωt 

· 

where τ is the heat diffusivity. 

We approximate the temperature equation by considering only cross-sectional 
averages within the loop: 

ωT q ωT 
+ = K(TE − T ) (29)

ωt a ωθ 

Here we have made the following assumptions: 

• RHS assumes that heat is transferred through the walls at rate 
K(Texternal − Tinternal). 

Conduction round the loop is negligible (i.e., no �2T ).• 

q γT is the product of averages, not (as it should be) the average of a • a γπ 
product; i.e., q is taken to be uncorrelated to ωT/ωθ. 

Recall that we parameterized the internal temperature with two time-dependent 
variables, T2(t) and T3(t). We also have the external temperature TE varying 
linearly with height. Specifically: 

TE = T0 + T1 cos θ 

T − T0 = T2 cos θ + T3 sin θ 
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Subtracting the second from the first, 

TE − T = (T1 − T2) cos θ − T3 sin θ. 

Substitute this into the temperature equation (29): 

dT2 dT3 q q 
cos θ + sin θ − T2 sin θ + T3 cos θ = K(T1 − T2) cos θ − KT3 sin θ. 

dt dt a a 
Here the partial derivatives of T have become total derivatives since T2 and 
T3 vary only with time. 

Since the temperature equation must hold for all θ, we may separate sin θ 
terms and cos θ terms to obtain 

sin θ : 
dT3 

dt 
− 
qT2 

a 
= −KT3 

cos θ : 
dT2 

dt 
+ 
qT3 

a 
= K(T1 − T2) 

These two equations, together with the momentum equation (28), are the 
three o.d.e.’s that govern the dynamics. 

We proceed to simplify by defining 

T4(t) = T1 − T2(t), 

which is the difference between internal and external temperatures at the top 
and bottom—loosely speaking, the extent to which the system departs from 
a “conductive equilibrium.” Substitution yields 

dT3 qT1 qT4 

dt 
= −KT3 + 

a 
− 

a 

dT4 qT3 
= −KT4 + 

dt a 

11.3 Dimensionless equations 

Define the nondimensional variables 
q g�T3 g�T4

X = , Y = , Z = 
aK 2a�K 2a�K 
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Here 

X = dimensionless velocity 

Y = dimensionless temperature difference between up and down currents 

Z = dimensionless departure from conductive equilibrium 

Finally, define the dimensionless time 

t∗ = tK. 

Drop the prime on t to obtain 

dX 
dt 

= −P X + P Y 

dY 
dt 

= −Y + rX − XZ 

dZ 
dt 

= −Z + XY 

where the dimensionless parameters r and P are 

g�T1 
r = = “Rayleigh number” 

2a�K 

P = = “Prandtl number” 
K 

These three equations are essentially the same as Lorenz’s celebrated system, 
but with one difference. Lorenz’s system contained a factor b in the last 
equation: 

dZ 
= −bZ + XY 

dt 
The parameter b is related to the horizontal wavenumber of the convective 
motions. 

11.4 Stability 

We proceed to find the fixed points and evaluate their stability. For now, we 
remain with the loop equations (b = 1). 
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The fixed points, or steady solutions, occur where 

Ẋ = Ẏ = Ż = 0. 

An obvious fixed point is 

X� = Y � = Z� = 0, 

which corresponds, respectively, to a fluid at rest, pure conduction, and a 
temperature distribution consistent with conductive equilibrium. 

sgn(Y ) implies that hot fluid rises and cold fluid falls. 

� 

Another steady solution is 

X� = Y � = ±
�
r − 1 

Z� = r − 1 

This solution corresponds to flow around the loop at constant speed; the ±
signs arise because the circulation can be in either sense. That sgn(X) = 

Note that the second (convective) solution exists only for r > 1. Thus we 
see that, effectively, r = Ra/Rac, i.e., the convective instability occurs when 
Ra > Rac. 

As usual, we determine the stability of the steady-state solutions by deter­
mining the sign of the eigenvalues of the Jacobian. 

Let ⎪
 ⎪

⎛ 
X� 

θ� = Y � 
X


θψ =
 Y ⎞ ,
⎛
 ⎞


Z Z� 

Then the Jacobian matrix is 
⎭
 ⎣


ωθ̇i 

ωθj 

−P +P 0 
r − Z� −1 −X� 

X� −1 
=
 ⎤


Y �π� 

The eigenvalues ε are found by equating the following determinant to zero:


−(ε + P ) P 0 
r − Z� −(ε + 1) −X� 

Y � X� −(ε + 1) 
= 0
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For the steady state without circulation (X� = Y � = Z� = 0), we have 

= 0.

−(ε + P ) P 0 

r −(ε + 1) 0 
00
 −(ε + 1)


This yields 
−(ε + P )(ε + 1)2 + rP (ε + 1) = 0 

or 
ε2(ε + 1)
 + ε(P + 1) − P (r − 1)
 = 0.


There are three roots: 

ε1 = −1 

ε2,3 = 
−(P + 1) 

2 
± 

�
2P P 1( + 1) + 4 ( ) −r 
2


As usual, 

Re{ε1, ε2, and ε3} < 0 =∞ stable 

Re{ε1, ε2, or ε3} > 0 =∞ unstable 

Therefore X� = Y � = Z� = 0 is 

stable for 0 < r < 1 

unstable for r > 1 

We now calculate the stability of the second fixed point, X� = ±
�
r − 1, 

Y � = ±
�
r − 1, Z� = r − 1. 

The eigenvalues ε are now the solution of 

= 0, S
= ±
�
r − 1.


−(ε + P ) P 0 
1 −(ε + 1) −S 

S −(ε + 1) S


(Explicitly, 

−(ε + p)(ε + 1)2 − P s2 − S2(ε + P ) + P (ε + 1) 

(ε + 1)[ε2 + ε(P + 1)] + εS2 + 2P S2 

= 

= 

0 

0.) 
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The characteristic equation is cubic: 

ε3 + ε2(P + 2) + ε(P + r) + 2P (r − 1) = 0 

This equation is of the form 

ε3 + Aε2 + Bε + C = 0 (30) 

where A, B, and C are all real and positive. 

Such an equation has either 

• 3 real roots; or 

• 1 real root and 2 complex conjugate roots, e.g., 

or 

3 real roots 1 real and 2 complex conjugates 

Rearranging equation (30), 

ε (ε2 + B) = −Aε2 − C < 0. 
� ⎜� � � ⎜� � 
positive real negative real 

Consequently any real ε < 0, and we need only consider the complex roots 
(since only they may yield Re{ε} > 0). 

Let ε1 be the (negative) real root, and let 

ε2,3 = � ± iλ. 

Then 
(ε − ε1)(ε − � − iλ)(ε − � + iλ) = 0 

and 

A = −(ε1 + 2�)


B = 2�ε1 + �2 + λ2


C = −ε1(�
2 + λ2)
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A little trick: 
C − AB = 2� 

�
(ε1 + �)2 + λ2

� 
. 

� ⎜� � 
positive real 

Since � is the real part of both complex roots, we have 

sgn(Re{ε2,3}) = sgn(�) = sgn(C − AB). 

Thus instability occurs for C − AB > 0, or 

2P (r − 1) − (P + 2)(P + r) > 0, . 

Rearranging, 
r(2P − P − 2) > 2P + P (P + 2) 

and we find that instability occurs for 

P (P + 4) 
r > rc = . 

P − 2 

This condition, which exists only for P > 2, gives the critical value of r for 
which steady circulation becomes unstable. 

Loosely speaking, this is analogous to a transition to turbulence. 

Summary: The rest state, X� = Y � = Z� = 0, is 

stable for 0 < r < 1 

unstable for r > 1. 

The convective state (steady circulation), X� = Y � = ±
�
r − 1, 

Z� = r − 1, is 

stable for 1 < r < rc 

unstable for r > rc. 

What happens for r > rc? 

Before addressing that interesting question, we first look at contraction of 
volumes in phase space. 
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11.5 Dissipation 

We now study the “full” equations, with the parameter b, such that 

Ż = −bZ + XY, b > 0. 

The rate of volume contraction is given by the Lie derivative 

1 dV � ωθ̇i 
= , i = 1, 2, 3, θ1 = X,θ2 = Y, θ3 = Z. 

V dt ωθii 

For the Lorenz equations, 

ω Ẋ ω Ẏ ω Ż 
ωX 

+ 
ωY 

+ 
ωZ 

= −P − 1 − b. 

Thus 
dV 

= −(P + 1 + b)V 
dt 

which may be solved to yield 

V (t) = V (0)e−(P +1+b)t . 

The system is clearly dissipative, since P > 0 and b > 0. 

The most common choice of parameters is that chosen by Lorenz 

P = 10 

b = 8/3 (corresponding to the first wavenumber to go unstable). 

For these parameters, 
41 
3V (t) = V (0)e− t . 

Thus after 1 time unit, volumes are reduced by a factor of e− 41 � 10−6 . The3 

system is therefore highly dissipative. 

11.6 Numerical solutions 

For the full Lorenz system, instability of the convective state occurs for 

P (P + 3 + b)
r > rc = 

P − 1 − b 
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For P=10, b=8/3, one has 
rc = 24.74. 

In the following examples, r = 28. 

Time series of the phase-space variables are shown in 

Tritton, Fig 24.2, p. 397 

•	X(t) represents variation of velocity round the loop. 

–	 Oscillations around each fixed point X+
� and X� represent variation −

in speed but the same direction. 

–	 Change in sign represents change in direction. 

•	Y (t) represents the temperature difference between up and downggoing 
currents. Intuitively, we expect some correlation between X(t) and Y (t). 

•	Z(t) represents the departure from conductive equilibrium. Intuitively, 
we may expect that pronounced maxima of Z (i.e., overheating) would 
foreshadow a change in sign of X and Y , i.e., a destabilization of the 
sense of rotation. 

Projection in the Z-Y plane, showing oscillations about the unstable convec­
tive fixed points, and flips after maxima of Z: 

BPV, Fig. VI.12 

A 3-D perspective, the famous “butterfly:” 

BPV, Fig. VI.14 

Note the system is symmetric, being invariant under the transformation X ∗ 
−X, Y ∗ −Y , Z ∗ Z.


A slice (i.e., a Poincaré section) through the plane Z = r − 1, which contains

the convective fixed points:


BPV, Fig. VI.15
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•	 The trajectories lie on roughly straight lines, indicating the attractor 
dimension d 2.◦ 

•	 These are really closely packed sheets, with (as we shall see) a fractal 
dimension of 2.06. 

d 2 results from the strong dissipation. • ◦ 

Since d 2, we can construct, as did Lorenz, the first return map ◦ 

zk+1 = f(zk), 

where zk is the kth maximum of Z(t). The result is 

BPV, Fig. VI.16 

(These points intersect the plane XY −bZ = 0, which corresponds to Ż = 0.) 

The first-return map shows that the dynamics can be approximated by a 1-D 
map. It also reveals the stability properties of the fixed point Z = r − 1: 

BPV, Fig. VI.17 

Finally, sensitivity to initial conditions is documented by 

BPV, Fig. VI.18 

11.7 Conclusion 

The Lorenz model shows us that the apparent unpredictability of turbulent 
fluid dynamics is deterministic. Why? 

Lorenz’s system is much simpler than the Navier-Stokes equations, but it is 
essentially contained within them. 

Because the simpler system exhibits deterministic chaos, surely the Navier-
Stokes equations contain sufficient complexity to do so also. 
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Thus any doubt concerning the deterministic foundation of turbulence, such 
as assuming that turbulence represents a failure of deterministic equations, 
is now removed. 

A striking conclusion is that only a few (here, three) degrees of freedom are 
required to exhibit this complexity. Previous explanations of transitions to 
turbulence (e.g., Landau) had invoked a successive introduction of a large 
number of degrees of freedom. 
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