
10 Introduction to Strange Attractors 

Thus far, we have studied only classical attractors such as fixed points and 
limit cycles. In this lecture we begin our study of strange attractors. We 
emphasize their generic features. 

10.1 Dissipation and attraction 

Our studies of oscillators have revealed explicitly how forced systems can 
reach a stationary (yet dynamic) state characterized by an energy balance: 

average energy supplied = average energy dissipated 

An example is a limit cycle: 

θ 

θ 

Initital conditions inside or outside the limit cycle always evolve to the limit 
cycle. 

Limit cycles are a specific way in which 

dissipation ∞ attraction. 

More generally, we have an n-dimensional flow 

d 
ψx(t) = Fψ [ψx(t)], ψx ≤ Rn (23)

dt 

Assume that the flow ψx(t) is dissipative, with attractor A. 
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Properties of the attractor A: 

•	A is invariant with flow (i.e., it does not change with time). 

•	A is contained within B, the basin of attraction. B is that part of phase 
space from which all initial conditions lead to A as t ∗ →: 

A 

B 

A	has dimension d < n.• 
Consider, for example, the case of a limit cycle: 

θ 

θ 

Γ 

The surface � is reduced by the flow to a line segment on the limit cycle 
(the attractor). Here 

d	 = attractor dimension = 1 

n = phase-space dimension = 2. 

This phenomenon is called reduction of dimensionality. 

Consequence: loss of information on initial conditions. 
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We have already quantified volume contraction. Given an initial volume V 
evolving according to the flow (23), the Lie derivative tells us that V changes 
as 

n 
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As we showed earlier, dissipation yields volume contraction; i.e., 

dV 
< 0. 

dt 

Consequently, the attractor cannot have n-dimensional volumes, so d < n. 

What, then, is the dimension of the attractor? 

We proceed by example, by considering the case d = 2. 

10.2 Attractors with d = 2 

What happens when d (the dimension of the attractor) is 2? 

Assume a quasiperiodic attractor on a torus T 2: 

ω 
ω 

2 
1 

C 

Cut the torus on a small circle C and open it:


A 
B 

A’ 
B’ 

Finally, cut the long way, from A to A∗, and open it again: 
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ω1 t 

ω2t 
A A’ 

B B’ 

2π 

2π 

Note the parallel trajectories. 

As usual, the quasiperiodic flows are characterized by two cases: 
γ1/γ2 rational or irrational. 

• Rational. Consider, e.g., γ1/γ2 = 1/3: 

ω1 t 

ω2t 

’ 

2π 

2π 

The trajectory repeats itself exactly every three times around the 2-axis, 
or each timen around the 1-axis. 

Irrational.• 

ω1 t 

ω2 t 

’ 

2π 

2π 

The trajectories densely fill the plane. 
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Determinism forbids non-parallel trajectories, because they would cross:


ω1 t 

ω2 t 

’ 

2π 

2π 

Thus a torus T 2 can only be a periodic or quasiperiodic attractor. 

The attractor cannot be aperiodic if d = 2. 

10.3 Aperiodic attractors 

We have already shown that the power spectrum of an aperiodic signal x(t) 
is continuous: 

xk 
2 

k 

And the autocorrelation �m = xjxj+m≡ has finite width: ⇒
Ψm 

m 

The finite width of �m implies that knowledge of no finite interval of x(t) 
allows prediction of all future x(t). 

This “unpredictability” is associated with what we call “chaos.” We seek, 
however, a more precise definition of chaos. 
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On an aperiodic attractor, small differences in initial conditions on the at-
tractor lead at later times to large differences, still on the attractor. 

In phase space, trajectories on an aperiodic attractor can diverge, e.g., 

We shall see that the divergence of trajectories is exponential in time. 

This phenomenon is called sensitivity to initial conditions (SIC). It defini
tively identifies chaos, i.e., a chaotic attractor. 

Note that, despite the precision of this definition, we are left with an apparent 
conundrum: simultaneously we have 

• attraction, such that trajectories converge. 

• sensitivity to initial conditions, such that trajectories diverge. 

The conundrum is solved by noting that trajectories converge to the attractor, 
but diverge on the attractor. 

Note further that divergence on the attractor implies that the attractor di
mension 

d > 2, 

since phase tractories cannot diverge in two dimensions. 

Thus we conclude that an aperiodic (chaotic) attractor must have phase space 
dimension 

n √ 3. 

Assume n = 3. How may trajectories converge, but still remain bounded on 
an attractor? 
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The trajectories are successively stretched (by SIC) and folded (thus re
maining bounded). 

To illustrate these ideas, see 

Figures 4.1.9–10, Abraham and Shaw 

• Trajectories diverge in plane by spiralling out (stretching). 

• Trajectories leave plane. 

• Trajectories return to plane (folding), back to center of spiral. 

At the same time, we must have volume contraction. One dimension can 
expand while another contracts, e.g. 

Figures 4.3.1, Abraham and Shaw 

10.4 Example: Rössler attractor 

We proceed to consider stretching and folding in more detail, using the Rössler 
attractor: 

ẋ = −y − z 

ẏ = x + ay 

ż = b + z(x − c) 

where we assume 
a > 0. 

Assume z and ż are small. Then in the x, y plane the system is apprxoximated 
by 

ẋ = −y 

ẏ = x + ay. 

Then 
ẍ = −ẏ = −x + aẋ
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yielding the negatively damped oscillator 

ẍ− aẋ+ x = 0. 

Consequently the trajectories spiral out of the origin. 

How is the spreading confined? From the equation for ż, we see that, for 
small b, 

x < c ˙∞ z < 0 

x > c ˙∞ z > 0 

Thus we expect trajectories to behave as follows: 

• Divergence from the origin creates x > c. 

• x > c ∞ z increases ∞ x decreases. 

• Eventually x decreases such that x < c. 

• Then x < c ∞ z decreases ∞ back in the x, y plane. 

• The process repeats. 

Thus we have 

• stretching, from the outward spiral; and 

• folding, from the feedback of z into x. 

A sequence of figures shows how endless divergence can occur in a bounded 
region: 

Figures 4.3.2–4, Abraham and Shaw 

Trajectories never close exactly as a surface, but more like filo dough: 

Figures 4.4.1–4, Abraham and Shaw 
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10.5 Conclusion 

We arrive at the following conclusions: 

•	 Aperiodic attractors must have


d > 2.


• Since dissipation contracts volumes, 

d < n,


where n is the dimension of the phase space.


•	 Suppose n = 3. Then a chaotic attractor must have 

2 < d < 3. 

How can 2 < d < 3? The attractor has a fractal dimension. 

Chaotic attractors have three properties: 

Attraction • 

SIC• 

• Non-integer fractal dimension. 

The combination of these three properties defines a strange attractor. The 
“strangeness” arises not so much from each individual property but their 
combined presence. 

Next we study the most celebrated strange attractor—the Lorenz attractor. 
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