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2.002 MECHANICS AND MATERIALS II 
QUIZ I 

SOLUTIONS 

Distributed: Wednesday, March 17, 2004 

This quiz consists of four (4) questions. A brief summary of each question’s content and 
associated points is given below: 

1.	 (10 points) This is the credit for your (up to) two (2) pages of self­prepared notes. 
Please be sure to put your name on each sheet, and hand it in with the test 
booklet. You are already done with this one! 

2.	 (20 points) A lab­based question. 

3.	 (40 points) A multi­part question about a linear elastic boundary value problem. 

4.	 (30 points) A ‘design for yield’ question. 

Note: you are encouraged to write out 

•	 your understanding of the problem, and 

•	 your understanding of “what to do in order to solve the problem”, even if you find 
yourself having “algebraic/numerical difficulties” in actually doing so: in short, 

•	 let me see what you are thinking, instead of just what you happen to write down.... 

The last page of the quiz contains “useful” information. Please refer to this page for equa­

tions, etc., as needed.


If you have any questions about the quiz, please ask for clarification.


Good luck!




Problem 1 (10 points) 

Attach your self­prepared 2­sheet (4­page) notes/outline to the quiz booklet. 

Be sure your name is on each sheet.


Problem 2 (20 points)


(Lab­Based Problem)


In your own words, describ e the following terms used in the description of linear elastic 
stress concentration, and briefly illustrate (with schematic figures, simple equations, etc.) 
how these features are used, measured, or are otherwise identified: 

•	 (5 points) stress concentration factor 

A stress concentration factor, Kt, can be defined as the ratio of the [peak] value of a 
stress component,σlocal, at a highly­stressed location (e.g., a notch root) to a nominal, 
or far­field value of a stress component, σnom , that is [typically] readily associated with 
overall loading: 

σlocal 
Kt ≡ 

σnom 

≥ 1. 

•	 (5 points) St. Venant’s principle St. Venant’s principle states that the perturbation 
in a nominally homogeneous stress state introduced by a [geometric/material] hetero­
geneity (e.g., a hole, notch, cut­out, or reinforcement) of characteristic linear dimension 
“�” decays rapidly with distance from the heterogeneity. In practice, the effects of the 
perturbation in the stress field are negligible for distances greater than ∼ 3�. 

(10 points) Describ e “best practice” in the location of a resistance strain gauge to 
measure stress concentration at the root of a through­thickness notch in a planar body 
subjected to in­plane loading. (1 page, maximum). 

The key ideas here are to note that (a) a strain gauge records an average value of strain 
parallel to its direction, with the region sampled being that beneath the gauge, and (b), in 
the presence of strong stress concentration, there are steep gradients in the values of in­plane 
strain (and stress) in the immediate vicinity of the notch root. Thus, any attempt to use a 
laterally­mounted strain gauge in order to estimate the strain concentration “at” the root 
of the notch will be hindered by the inherent averaging­in of lower [than peak] strain in the 
region under the gauge. 

Conversely, viewing the body as having a small but finite thickness, t, at its notch root, the 
variation in strain along the notch is generally much less rapid than its variation “radially” 
away from the notch surface. Thus, a strain gauge mounted on the t­thick surface of the 
notch root provides a much more reliable estimate of the peak strain at the notch than can 
be obtained from a similar gauge mounted laterally on the faces of the body. 
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Problem 3 (40 points) 

A large isotropic linear elastic body contains a long, embedded fiber, of radius a, extending 
parallel to the x3 axis (see Fig. 1, below). The fiber is made of a different material than 
the surrounding matrix; elastic moduli of the fiber greatly exceed those of the surrounding 
matrix. Thus, as an approximation, we can treat the fiber as a rigid, non­deforming body. 

Under a certain loading of the fiber­containing matrix, the spatial variation of the compo­
nents ui of the displacement vector u in the matrix region is described by 

u1(x1, x2, x3) = 0 

u2(x1, x2, x3) = 0 
2

�
a

� 

u3(x1, x2, x3) = γ x2 1 − 
2x1 + x2 

, 
2 

for a dimensionless constant “γ” satisfying γ � 1. (N.B.: These expression apply only in | | 
2 2the matrix region exterior to the rigid fiber; that is, at locations satisfying x1 +x2 ≡ r2 .≥ a

• (5 points) Evaluate the spatial dependence of all components of the strain 
tensor, �ij 

�11 ≡ 
∂u1 

∂x1 

= 0 

�22 ≡ 
∂u2 

∂x2 

= 0 

�33 

�12 = �21 

≡ 

≡ 

∂u3 

∂x3 

= 0 

1 

2 

� 
∂u1 

∂x2 

+ 
∂u2 

∂x1 

� 

= 0 

�13 = �31 

�23 = �32 

≡ 

≡ 

1 

2 

� 
∂u1 

∂x3 

+ 
∂u3 

∂x1 

� 

= 
x1x2γa2 

(x2 
1 + x2 

2)
2 

1 

2 

� 
∂u2 

∂x3 

+ 
∂u3 

∂x2 

� 

= 
γ 
2 

�
1 − 

a2 

x2 
1 + x2 

2 

+ 
2a2x2 

2 

(x2 
1 + x2 

2)
2 

� 

•	 (5 points)Based on the strain components calculated above, evaluate the spatial 
dependence of all components of the stress tensor, σij . 

3
E 

� 
ν 

� 

�ij +σij = 
(1 + ν) (1 − 2ν) 

�� 
�mm 

� 

δij . 
m=1 

σ11 = σ22 = σ33 = σ12 = σ21 = 0; 

3 
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E	 2x1x2Gγa2 

σ13 = σ31 = �13 = 2G�13 = 
2 21 + ν (x1 + x2)

2 

2 2E	
�

a 2a2x2 

�
σ23 = σ32 = �23 = 2G�23 = Gγ 1 − 

2 
+ 

2 21 + ν	 x1 + x2 (x1 + x2)
2 

2 

(5 points) Describ e the state of stress “far” from the fiber. Distance from the 
2 2fiber can be measured by radius r ≡ 

�
x1 + x2; when r/a � 1 (or, equivalently, when 

a/r � 1, the point is far from the outer boundary of the fiber. By introducing the 
distance variable r into the spatial dependence of the two non­zero stress components, 
we see that 

2 2
�

a 2a2 x2 

�
σ23 = σ32 = Gγ 1 − 

2 
+ Gγ 

r r2 r2 
→ 

2x1x2 a
2 

σ13 = σ31 = 2G�13 = Gγ 0 
r2 r2 

→ 

The ‘far’ limits apply because a/r � 1 (and even more so for (a/r)2), while x1x2/r
2 = 

sin θ cos θ remains bounded for large r/a. 

•	 (10 points) Show that the stress tensor components calculated above satisfy 
the equilibrium equations. A bit of reflection concerning the equilibrium equations 

3
∂σij

� 
= 0i

∂xjj=1 

will show that the only relevant equation is for equilibrium in the x3 direction (i = 3): 

∂σ31 ∂σ32 
+ = 0. 

∂x1 ∂x2 

The non­zero stress component σ13 (which appears, differentiated with respect to x3 

in the x1­direction equilibrium equation), does not depend on x3; likewise, the stress 
component σ23 appears in the x2­direction equilibrium equation, but only when it is 
differentiated with respect to x3, on which it does not depend. Thus, only the x3 

component remains. Using the previous expressions, 

∂σ31 ∂ [2x1x2a
2r−4] 

= Gγ 
∂x1 ∂x1 

2 2 = Gγ 
�
2a x2r

−4 + (2a x1x2)(−4r−5 x1/r)
� 

2 = Gγ 2a 2 x2r
−4 

�
1 − 4x1/r

2
� 
; 
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�


�


�
 �


�
 �


2	 2∂σ32 ∂[1 − a2/r2 + 2a x2/r
4] 

= Gγ 
∂x2 

= 

∂x2 
32 

�
2x2r

−4 − 4x2r
−6

��
Gγ
 2 x2r

−4 + 2a2a 
2 = Gγ 2a 2 x2r

−4 
�
3 − 4x2/r

2

In writing these two evaluations, use was made of the chain rule and the relation 
∂r2/∂x1 = 2r∂r/∂x1 = 2x1 ⇒ ∂r/∂x1 = x1/r, along with the related identity 
∂r/∂x2 = x2/r. 

We can now add the two expressions in the x3­component of the equilibrium equation: 

∂σ31 ∂σ32
0	 = + 

∂x1 ∂x2 
2 2x1 x2 

2 
)Gγ 2a 2 x2r

−4 (1 − 4

2 
) + (3 − 4 

r r
2 2(x1 + x2) 

=


Gγ 2a 2 x2r
−4 (1 + 3) − 4 )
= 

2r
= 0. 

The x3 component of static equilibrium is indeed satisfied. 

•	 (5 points) A particular point “P ” on the interface between the fiber and the matrix 
is located at in­plane position xP = x1e1 + x2e2 = a cos θe1 + a sin θe2 

–	 evaluate the components, {ni}, of the unit normal vector, n, pointing 
from the surface of the matrix at P toward the interior of the fiber. 
This unit vector is just n = − (cos θ e1 + sin θ e2) ; 

⎧
⎨ 

⎩


n1 

n2 

n3 

⎫
⎬ 

⎭

=


⎧
⎨ 

⎩


− cos θ

− sin θ


0


⎫
⎬ 

⎭

.


– evaluate the components, {ti}, of the traction vector acting on the sur­
face of the matrix at P. 

⎧
⎨ 

⎩


t1 

t2 

t3 

⎫
⎬ 

⎭

=


⎡
⎣


0 0 σ13 

0 0 σ23 

σ31 σ32 0 

⎤
⎦


⎧
⎨ 

⎩


− cos θ

− sin θ


0


⎫
⎬ 

⎭

=
−


⎧
⎨ 

⎩


0

0


σ31 cos θ + σ32 sin θ 

⎫
⎬ 

⎭

. 
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•	 (10 points) Use your physical understanding of this problem to define and 
evaluate an appropriate stress concentration factor. Examination of the peak 
values of the stress components shows that the peak stress occurs for component σ32 

at locations just on the top/bottom of the fiber, at x1 = 0 and x2 = ±a. At those 
σlocal 2σremotepoints, = 2Gγ = 32 . Thus, the stress concentration factor can be defined as32 

σ32(x1 = 0; x2 = a)
Kt = 

±
= 2. 

σ32(r →∞) 

Useful information: 2G(1 + ν) = E, where G is the isotropic linear elastic shear modulus, E 
is the Young’s modulus, and ν is Poisson’s ratio. 

Figure 1: Cross­section of large linear elastic body (“the matrix”) containing a long fiber 
of diameter 2a parallel to the x3­axis. The elastic moduli of the fiber are much larger than 
those of the matrix, so the fiber is idealized as being rigid, or elastically non­deformable, in 
comparison. 
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Problem 4 (30 points) 

A closed­ended thin­walled circular cylindrical pressure vessel has wall thickness t = 5 mm 
¯and mean radius R = 50 mm. Material properties for the tube include E = 208 GPa, 

ν = 0.30, and σy = 500 MPa. 

•	 (10 points) At zero internal pressure, the long closed tube is subjected to an unknown 
axial tensile force, N , which causes an axially­oriented strain gauge mounted on the 
outer diameter of the tube to register a strain of magnitude 0.0010. Evaluate N . 
Solution: The stress state in the tube wall, due to axial force N alone, over the 

. ¯tube cross­sectional area A = 2πRt, is uniaxial, of magnitude σzz = N/A; all other 
cylindrical stress components are zero: σrr = σθθ = σrθ = σrz = σθz = 0. Under 
uniaxial stress, the axial stress and strain components are related by 

σzz = E�zz = 
�
208 × 103 MPa

� × 10−3 = 208 MPa ≡ σ(N).zz 

The axial load/stress relation is 

¯	 N/mm2 

N = 
�
2πRt

� 
σ(N) = 2π (50 mm)(5mm)× (208 MPa)× = 326.7 kN zz MPa 

•	 (15 points) With the load N held constant, gas is introduced into the cylinder, causing 
the internal pressure, p, to increase. Evaluate the maximum pressure that can 
be applied without initiating plastic deformation in the wall of the tube. 
Solution: The internal pressure of magnitude p creates both an axial and a hoop stress 
stress component in a closed­ended, thin­walled cylinder: 

¯ ¯pR pR .
σθθ = ; σzz = ; σrr = 0. 

t 2t 

These stresses must be superposed with those due to the axial force, N ; The resulting 
non­zero stress components are 

¯pR 
σθθ = ≡ Σ; 

t 

¯pR 
+ σ(N)σzz =

2t zz = Σ/2 + σ(N),zz 

where σ
(N) 

= 208 MPa is that due to the axial load, as noted above. The initial yield 
condition can be expressed in terms of the Mises equivalent tensile stress, σ, as 

zz 

¯

σ̄ = σy, or 
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1 
σ2 = ¯ = [(σzz − σθθ)

2 + σ2 + σ2 
y σ2 

2	 zz θθ] 

= σ2 + σ2 
zz θθ − σzzσθθ 

= 

� 
Σ

+ σ(N)

�2 

+ (Σ)2 − Σ

� 
Σ

+ σ(N)

� 

2 zz	 2 zz 

�
1 

= Σ2 1 + 
1
� 

+ Σσ(N) + 
�
σ(N)

�2 − Σσ(N) 
zz zz zz 4 

− 
2 

3 
σ2 Σ2 + 

�
σ(N)

�2 
= y 4 zz 

This can be solved as a quadratic expression for Σ: 

4 
Σ2 = 

�
σy 

2 − (σ(N))2
� 
;

3 zz 

2	 2 
Σ = 

�
σy 

2 − (σ(N)
)2 = √

3 

�
(500 MPa)2 − (208 MPa)2 = 525 MPa √

3 
¯	 ¯

zz 

Recalling the definition of Σ = pR/t, the corresponding pressure is p = Σt/R = 
525 MPa × (5 mm/50 mm) = 52.5 MPa. 

•	 (5 points) With the load N applied, along with the pressure level determined above, 
what values will the strain gauge read? 

Using the linear elastic stress­strain equations, the axial strain is related to the stress by 

1 
�zz = [σzz − ν (σrr + σθθ)] . 

E 

¯	 ¯In our case, σrr = 0, σθθ = pR/t = Σ = 525 MPa, and σzz = σ
(N) 

+ pR/2t = 208 MPa + 
262.5 MPa = 470.5 MPa. Thus 

1 

zz 

�zz = 
208 × 103 MPa 

[470.5 MPa − 0.3(525 MPa)] = 0.00150. 

List all assumptions. We have used the thin­walled relation to compute cross­sectional 
area. 
We have assumed that the radial stress can be neglected in calculation of yielding, and that 
the state of stress is approximately uniform through the wall thickness of the tube. 

Note that a slightly more conservative value for the “at yield” pressure value could be 
obtained by recognizing that, on the inside radius of the tube, the value of the radial stress 

¯is σrr = −p = −(t/R)Σ = −Σ/10. Thus, when the Mises stress expression is evaluated with 
this (small, but non­zero) value for σrr, the resulting quadratic equation for Σ is changed; 
a numerical solution for this case gives Σ = 516 MPa and p = 51.6 MPa, just a couple of 
percent below our (simpler) estimate, above, that gave Σ = 525 MPa and p = 52.5 MPa. 
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Figure 2: Schematic of thin­walled tube subjected to axial load N and internal pressure, p.
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Isotropic Linear Thermal­Elasticity 
(Cartesian Coordinates) 

Stress/Strain/Temperature­Change Relations: 

3�1 
�ij = αΔT δij + (1 + ν) σij − ν σkk δij . 

E 
k=1 

E 
3�ν (1 + ν) 

(1 − 2ν) 
σij = �ij + �mm δij − αΔT δij . 

(1 + ν) (1 − 2ν) 
m=1 

Strain­displacement Relations: 

1 
� 

∂ui ∂uj
�ij = + . 

2 ∂xj ∂xi 

Equilibrium equations (with body force and acceleration):


3� ∂2ui∂σij 
+ ρbi = ρ 

∂xj ∂t2 
j=1 

Mises Stress Measure: 
� 

1 
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3 [σ2 

23 + σ2 
12 + σ2σ̄ ≡ 

2 
]. 

Traction on elemental area with unit normal “n”: 

3�
ti(n) = σij nj . 

j=1 
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