Ain Sonin and Gareth McKinley Solutions to Quiz 2 2.25 Fall 2004

Problem 1  The transition from dripping to jetting

See C. Clanet & J. Lasheras, “Transition from Dripping to Jetting”, J. Fluid Mech 383, 1999 p307
for more details on this problem!
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Figure 1 Figure 2 (snapshot at a single instant in time ¢)

For fluids exiting from typical size orifices, viscous stresses are negligible because a
dimensionless parameter known as the Ohnesorge number is small. This is defined as

Oh = 1/\[poD . For the case here we thus have Oh = 10/1/103(0.07)(0.005) = 0.0017 !

(a) The surface is cylindrical and there is no tangential stress (no viscous effects). Normal to the

jet we have pressure and surface tension acting. The principal radii of curvature for a cylinder
are such that the mean curvature is given by:
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The additional axial force arising from surface tension acting along the axial direction of the

jetis F, = Do (remember surface tension is a line force — proportional to length).

(b) Criterion: The flux of momentum into the control volume shown must always be greater
than zero (otherwise a stationary pendant drop will have formed which is attached to the
orifice).

The ‘A form’ of the conservation of linear momentum is most appropriate; this gives

%+ [ po@-v,)mda=YF, 3)
! CS(1)
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For the z-component of linear momentum with positive z in direction of gravity we thus find:

chv _ pUZ

20
- 1zD* +0=-rDo - pa(%ﬂD2)+(pa +3)(%n’D2)+ (txD*)pgl (4

(NB there is an inflow but no outflow flux term — and don’t forget atmospheric pressure
pushing upwards on bottom of the fluid column). On rearranging and simplifying, one finds

U> (2—6 - ng (5)

U°D D .
in dimensionless form Pz, 2{1 - pg_} where the Weber number is We = pU ’D / o.
o

(c) Unsteady momentum balance as shown in the figure: Time t=0 Time t>0
NB here we consider a coordinate system oriented vertically
upwards (so that g =—gé_). We ignore the small contribution of U=0 /( % Dz)
the mass in the long thin jet and consider only the large terminal
drop which has a mass M,,(¢) and a velocity z(7).

Conservation of mass gives:

dM .,
dt

-p(U+2)A=0, (6)

where for convenience we write A = %n’D2 henceforth.

Conservation of linear momentum for the control volume shown in
the figure gives:

d(My(13)

” (—pU)(—=(U+2))A+0=rDo - %c -M_ (g, (7)

where the incoming linear momentum (per unit volume) is —pU$, .
TABLE OF IMPORTANT TERMS

Term Inflow Outflow
Outward facing normal n +8, -0,
Velocity vector v -U$d, 0
Control surface velocity, v, +20, 0
Normal component of velocity relative to CS. U, =(-v,)-n=—U+2) |0

(d) With boundary condition z(¢ = 0) = 0 integrating equation (6) for mass gives

M, = pA(z+Ut) (i.e. increases linearly with both z and time)
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dM
Expanding (2) gives dtcv 2+ M, 7+ pUAZ+U)= %EDO' -M,.g. (8)

Eliminating the mass M, (t) from this expanded form of equation (7) gives following nonlinear
second order differential equation for the position z(?):

z'(U+z')+(z+Ut)'z'+U(z'+U)=%—g(z+w). 9)

Substituting the simple quadratic forms z(¢) = %at2 +(b-U) ,z=0b-U)+at and 7 =a gives

three equations for terms of order #, ¢' and 7’ respectively:

Gathering terms at order #* gives a=—-g /3
Gathering terms at order ¢' gives a =—g /3 also (i.e. solution is consistent)

and gathering terms at order #° gives b = rbo = 20 (by eliminating area A)
2pA pD

The following is not part of the quiz but might be of interest:

this final parameter b is the characteristic velocity of an inertio-capillary wave which travels along
the surface of the jet. This wave (connected to the pendant drop) travels upstream against the
downwash of linear momentum of the jet (imagine a salmon swimming upstream!). The trajectory
of the pendant drop is thus

2=—181" + (Ve — Ut (10)

It U<V, then the initial velocity is upwards. Eventually the incoming negative-momentum

(downwards) wins and the parabolic trajectory reaches a maximum height of

Zmax = 3Viwave —U ) /(Zg) and then the drop accelerates downwards until it breaks and the

PIRVAN

process repeats...

o
Of

.....conservation of mass and linear momentum in action

Note that the fluid in this case is actually a dilute polymer solution. The polymer serves to stabilize the thin ligaments that

connect the pendant drop to the jet; however the elasticity does not make a dominant contribution to the momentum balance.
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2.25 SOLUTION, PROB. 2, QUIZ 2, 2004

A. Mass conservation for a fixed CV between x=0 and x=x:

A pav=—[ pv.aa (1)
dt Ccv CS
Canceling densities and substituting for the volume integral, we get
dy o
—| 7R x|=-0(x,t 2
=R x] =00 )
where Q is the local volume flow rate at x,z. The local mean-velocity distribution is
u(e,n) = 250, ©
TR~ (1)
Eliminating Q between (2) and (3), we get the mean-velocity distribution
2Kkx
u(x,t)=—— 4
(x,1) R(D) “4)
where
K=—dR/dt. 5)

B. The pressure distribution is obtained by recognizing that in the locally-fully-
developed (inertia-free) approximation, the local volume flow rate in a tube is

nR* d,
0=-"—" (©)
8u dx
Eliminating Q between (6) and (2), we find
dp l6uxx
2 7
dx R’ ™
so that
16ux xdx
dp=——— (8)
Integrating (8) from the center-point (x=0) to atmospheric (x=L), we get
8uKl’
pO) - p(L)="% ©)
R
C. There are three criteria,
2
£<<l, M£<<1, R—<<1 (10)
L u L VAt

in which U should be chosen conservatively as the highest velocity in the system,
U =2kL/R, yielding, to order of magnitude,

2
£<<l, ﬁ<<1, R—<<1 (1D
1% VAt



