
Ain Sonin and Gareth McKinley Solutions to Quiz 2 2.25  Fall 2004

Problem 1 The transition from dripping to jetting

See C. Clanet & J. Lasheras, “Transition from Dripping to Jetting”, J. Fluid Mech 383, 1999 p307
for more details on this problem!

Figure 1       Figure 2 (snapshot at a single instant in time t)

For fluids exiting from typical size orifices, viscous stresses are negligible because a
dimensionless parameter known as the Ohnesorge number is small. This is defined as
Oh = µ ρσD . For the case here we thus have Oh ≈ 10−3 103(0.07)(0.005) ≈ 0.0017 !
(a) The surface is cylindrical and there is no tangential stress (no viscous effects). Normal to the

jet we have pressure and surface tension acting. The principal radii of curvature for a cylinder
are such that the mean curvature is given by:
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hence pin = pa + 2Hσ( )n → pi = pa +
2σ
D

(2)

The additional axial force arising from surface tension acting along the axial direction of the
jet is Fz = πDσ   (remember surface tension is a line force – proportional to length).
(b)  Criterion: The flux of momentum into the control volume shown must always be greater

than zero (otherwise a stationary pendant drop will have formed which is attached to the
orifice).
The ‘A form’ of the conservation of linear momentum is most appropriate; this gives

 

dPcv
dt

+ ρv(v - vc ) ⋅n dA
CS(t )
∫ = Fcv∑ (3)
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For the z-component of linear momentum with positive z in direction of gravity we thus find:

dPcv
dt

− ρU2 1
4 πD
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(NB there is an inflow but no outflow flux term – and don’t forget atmospheric pressure
pushing upwards on bottom of the fluid column). On rearranging and simplifying, one finds
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 where the Weber number is We = ρU2D σ .

(c) Unsteady momentum balance as shown in the figure:
NB here we consider a coordinate system oriented vertically
upwards (so that g = −gδ z ). We ignore the small contribution of
the mass in the long thin jet and consider only the large terminal
drop which has a mass Mcv(t) and a velocity  z(t) .

Conservation of mass gives:

     
 

dMcv
dt

− ρ U + z( )A = 0 , (6)

where for convenience we write A = 1
4 πD

2  henceforth.
Conservation of linear momentum for the control volume shown in
the figure gives:

 

d(Mcv(t)z)
dt

+ (−ρU ) −(U + z)( )A + 0 = πDσ −
πD
2

σ − Mcv(t)g  ,   (7)

where the incoming linear momentum (per unit volume) is −ρUδ z .
TABLE OF IMPORTANT TERMS
Term Inflow Outflow
Outward facing normal n +δ z −δ z
Velocity vector  v −Uδ z 0

Control surface velocity,  vc  + zδ z 0

Normal component of velocity relative to CS.    vrn = (v - vc ) ⋅n = −(U + z) 0

(d) With boundary condition z(t = 0) = 0 integrating equation (6) for mass gives
Mcv = ρA(z +Ut)   (i.e. increases linearly with both z and time)

U = Q π
4 D
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Expanding (2) gives
 

dMcv
dt
z + Mcvz + ρUA( z +U ) = 1

2 πDσ − Mcvg . (8)

Eliminating the mass Mcv(t) from this expanded form of equation (7) gives following nonlinear
second order differential equation for the position z(t):

 
z U + z( ) + z +Ut( )z +U( z +U ) = πDσ

2ρA
− g z +Ut( ) . (9)

Substituting the simple quadratic forms z(t) = 1
2 at

2 + (b −U )t  ,  z = (b −U ) + at  and  z = a  gives
three equations for terms of order t2, t1 and t0 respectively:

Gathering terms at order t2 gives a = −g / 3
Gathering terms at order t1 gives a = −g / 3  also (i.e. solution is consistent)

and gathering terms at order t0  gives b = πDσ
2ρA

=
2σ
ρD

  (by eliminating area A)

The following is not part of the quiz but might be of interest:
this final parameter b is the characteristic velocity of an inertio-capillary wave which travels along
the surface of the jet. This wave (connected to the pendant drop) travels upstream against the
downwash of linear momentum of the jet (imagine a salmon swimming upstream!). The trajectory
of the pendant drop is thus

z = − 16 gt
2 + (Vwave −U )t (10)

If U <Vwave  then the initial velocity is upwards. Eventually the incoming negative-momentum
(downwards) wins and the parabolic trajectory reaches a maximum height of
zmax = 3(Vwave −U )

2 (2g)  and then the drop accelerates downwards until it breaks and the
process repeats…

…..conservation of mass and linear momentum in action
Note that the fluid in this case is actually a dilute polymer solution. The polymer serves to stabilize the thin ligaments that

connect the pendant drop to the jet; however the elasticity does not make a dominant contribution to the momentum balance.
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2.25 SOLUTION, PROB. 2, QUIZ 2, 2004

A. Mass conservation for a fixed CV between x=0 and x=x:

� 

d
dt

ρdV = − ρVn
CS
∫

CV
∫ dA (1)

Canceling densities and substituting for the volume integral, we get

� 

d
dt

πR2x[ ] = −Q(x, t) (2)

where Q is the local volume flow rate at x,t. The local mean-velocity distribution is

� 

u(x, t) = Q(x,t)
πR2(t)

. (3)

Eliminating Q between (2) and (3), we get the mean-velocity distribution

� 

u(x, t) = 2κx
R(t)

(4)

where

� 

κ = −dR dt . (5)

B. The pressure distribution is obtained by recognizing that in the locally-fully-
developed (inertia-free) approximation, the local volume flow rate in a tube is

� 

Q = −πR
4

8µ
dp
dx

(6)

Eliminating Q between (6) and (2), we find

� 

dp
dx

= −16µκx
R3

(7)

so that

 

� 

dp = −
16µκ xdx

R3
(8)

Integrating (8) from the center-point (x=0) to atmospheric (x=L), we get

� 

p(0) − p(L) = 8µκL2

R3
(9)

C. There are three criteria,

� 

R
L

<<1, ρUR
µ

R
L

<<1, R2

νΔt
<<1 (10)

in which U should be chosen conservatively as the highest velocity in the system,

� 

U ≈ 2κL R , yielding, to order of magnitude,

� 

R
L

<<1, κR
ν

<<1, R2

νΔt
<<1 (11)


