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When a jet of fluid impinges on a horizontal plate, the fluid flows radially outward away 
from the jet in a thin film. At a distance Rj from the jet, the thickness of the film suddenly 
increases. This phenomenon is known as a hydraulic jump. In general, the flow in the jump 
region is turbulent.1 Consider a jet with volume flux, Q, and radius, a. The fluid in the jet 
can be approximated as inviscid with density, ρ. The acceleration of gravity is −g. You 
may assume the flow is axially symmetric. You may also assume a � H � Rj . 

The hydraulic jump can be divided into three regions as indicated in the figure: (1) the 
upstream region, a < r < Rj , (2) the jump region r ∼ Rj and (3) the downstream region 
r > Rj . Follow the steps below to find an expression for the steady state jump radius, Rj . 

a.)� Using dimensional analysis, find a complete set of independent Pi groups for�
this system.�

Solution: The jump radius could depend on:�

Rj = Φ(ρ,Q, a,H, g) 

However, the only parameter in this list that includes mass is ρ so there is no 
way to eliminate [M ] if ρ in included in a Pi group. Hence 

Rj = Φ(Q, a,H, g) 

Whether we include H as a parameter depends on the far­field boundary con­
dition. In many hydraulic jump experiments, H can be tuned independently 

1This turbulence may be suppressed in sufficiently viscous fluids but here we will only consider the 
turbulent case. 
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by placing a wall of height H at a radius much larger than the jump radius. 
However H may also be determined by a balance of gravity and surface tension. 
Since the far­field conditions were not specified, either answer is acceptable. L 
may also be included as a possible paramter. µ should not be included as the 
flow is modeled as inviscid. The number of Pi groups = n − k (using the list 
above) where n = 5 and k = 2 ([L] and [T ]). Thus 

H 
Π3 = 

a5g
Π1 = 

Rj 
, Π2 = , 

a a Q2 

Note that Π3 = a5g/Q2 ∼ ga/v2 = 1/F ra where F ra is the Froude number 
defined using a as a characteristic length scale. 

b.)� In the downstream region (3), the height of the free surface is a known constant, 
H (i.e., the height of the free surface is NOT a function of r). Find an expression 
for the average velocity in the downstream region. 
Solution: By conservation of mass: 

Q = 2πrHvr (r) ⇒ vr (r) = 
Q 

2πHr 

c.)� The upstream region (1) consists of a jet impinging on a horizontal plate. Derive 
an expression for the height of the free surface in this region, h(r), and the 
average radial velocity. Recall that you may assume a � Rj . 
Solution: 

1

2

By conservation of mass: 

Q = v1πa 2 = v22πrh(r) 

Following a streamline from point 1 to point 2 along the free surface, we can 
apply Bernoulli (note that p = pa everywhere along the streamline). 

1 1 
1 + ρgL = pa + ρv2 pa + ρv2 
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⇒ v2 = v2 + 2gL = Q2/(πa2)2 + 2gL = constant ≡ V1 

The Froude number in terms of L, the distance of the jet source above the 
plate, F rL is given by v2/gL ∼ Q2/a4gL. In the limit F rL � 1, 

Q
V ≈ 

πa2 

(i.e. v1 ≈ v2). Combining this with conservation of mass: 

a
h(r) = 

Q 
= 

2 

2πrV 2r 

d.)� Now that you have obtained an expression for the height of the free surface and 
the velocity on either side of the jump, derive an expression for Rj in terms of 
known parameters. 
Solution: 

r < Rj r > Rj 
v(r) Q/πa2 Q/2πHr 
h(r) a2/2r H 

Drawing a control volume annulus with inner radius at Rj − � and outer radius 
Rj + � we can write down an expression for conservation of momentum2 . (For 
simplicity will take pa = 0. 

d 
ρv dV + ρv(v − vc) · n dA = pan dA − ρgez dV 

dt�
−

cv cs� cs cv 

The first term is zero since the system is in steady state. The pressure term is 
also zero as the pressure at the surface is zero and, since the streamlines are 
roughly straight entering and exiting the control volume, the pressure is ≈ 0 in 
the flow. We can also rewrite the last term using the Divergence Theorem: 

ρv(v − vc) · n dA = ρgzn dA−
cs� cs 

In the er direction: � �2Q
ρ 

2πH(Rj + �)
2π(Rj + �)H − ρV 22π(Rj − �)h (Rj −�) 

1� 1 
= −ρg H22π(Rj + �) − h2

(Rj −�)2π(Rj − �)
2� 2 

|

Note that we CANNOT match the velocities at the jump! Since the upstream and downstream heights 
are different, by conservation of mass, the upstream and downstream velocities must be different. 
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Take the limit as � 0:→ 

Q� a a
ρ 

� �2 
2πRjH − ρ 

� 
Q 

�2 
2πRj 2R

2 

j 
= −ρg 

� 

H2πRj − 
� 

2R

2 

j 

�2 

πRj 

� 

2πHRj� πa2 

Define F rH = Q
4

2 

H , R = Rj/a, and A = a/H. After some algebra, the equation 
ga

above reduces to a quadratic in R and we can write the solution as: ⎡ � � �2 � ��1/2 
⎤ 

AF rH ⎦R = ⎣1 ± 1 − 
π2 2F rH − 1

2π2 F rH π 

If F rL � 1 and L/H � 1 then F rH � 1. Hence � � �1/2 
� 

AF rH π2 
R ≈ 

2π2 1 ± 1 − 
F rH 

Thus 
A� AF rH orR ≈ 
2 

R ≈ 
2π2�

Or in dimensional form:�

a2� Q2 
Rj ≈ 

2H 
or Rj ≈ 

2π2ga2H2 

To select the relevant solution, note that the first one implies that there is no 
2ajump. I.e. using the first solution, h(Rj) = 

2a2/(2H) = H hence there is no 
jump (the transition from the upstream to the downstream region is smooth). 
Thus, the jump solution is the second one. 

e.)� Convert your answer from part (d) into dimensionless form using your Pi groups 
from part (a). 

π1 = (2π2π2 
2 π3)−1 
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Q2. Adhesive Separation of Two Disks [20pts]. 

It is a matter of common experience that it can take a large force to separate two surfaces that are 
joined by a thin layer of a viscous fluid which acts as an adhesive. Some insects such as aphids 
are believed to exploit this fact by using thin adhesive-like liquid films on their feet to enable 
them to walk inverted across the ceiling. In this question we consider the model problem of a 
cylindrical disk (radius R) separated by a constant initial thickness H0 (<< R) with a thin 
cylindrical film of a viscous incompressible Newtonian fluid (of viscosity µ and density ρ) in the 
gap. 

The plates are to be separated by a 
constant force F0 that is imposed on 
the lower plate as shown in the figure 

separation profile
 
!H (t)

opposite. We wish to solve for the
as a function 

of time (where the overdot indicates a 
time derivative). 

(a) The cylindrical fluid film shown has a free surface with a surface tension σ. Use 
dimensional analysis to provide a dimensionless constraint for conditions under which all 
capillary effects (i.e. interfacial force contributions) are negligible in the subsequent 
analysis. 

we immediately see from inspection that we require
 
!R F !1

If the additional force from surface tension is small compared to other forces in the problem then 
. 

If you consider this from point of view of full dimensional analysis (NOT required) then we seek 
to find a functional relationship of the form: 

 
!H = f (F0,µ,!," ,D,H0 )

We thus find that we have n = 7, k = 3 and n-k = 4 dimensionless groups; choosing F (flow), µ 
(fluid, since we expect flow in thin gap to be viscously dominated) and R (geometry) we thus 
find that for most general case: 

 

!HµR

F0

= !
"R
F0

,
H0

R
,
#F0
µ2

$

%&
'

()

the fourth group should be familiar from homework (see 7.18). If surface tension effects and 
inertial effects are completely negligible then this expression simplifies to the following form: 

 
!HµR F0 = !2 H0 R( ) . 

(b) Let us consider the first instant in time ( t = 0
+denoted ) after the constant force is applied to 

the disk when the sample is cylindrical as shown. Write down the appropriate simplified 
form of the Navier-Stokes equations (in cylindrical coordinates) together with the 
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appropriate boundary conditions, and any dimensionless criteria which must be attained for 
this simplification to be valid. 

axial
- - - R,

 
!H

As usual for a locally fully developed and quasi steady flow, we scale radial lengths with 
(gap) scales with H0 , velocity with (which needs to be found as part of the problem) 

and time with τ. The radial component of the Navier-Stokes equation then simplifies to: 

 

0 = !
"p

"r
+ µ

"
2
v
r

"z
2  

H R!1, ! "HR µ( ) H R( )
2
!1, and H

2 "# !1

 
pc ~ µ !H H( ) R2 H

2( ) ( R H( )
2 ). 

 
v
r
= 0 z H 

provided 

where the characteristic scale for pressure in a lubrication flow is thus expected to be 
i.e. a viscosity times a deformation rate times the factor

The appropriate boundary conditions on velocity are at = 0, and for the pressure we 
expect p = patm at r = R. 

(c) Find the resulting form of the radial velocity profile in terms of the (as yet unknown) radial 
pressure gradient. 

Integrating the velocity field twice and applying boundary conditions we obtain 

 

vz (r,t) =
H (t)

2

2µ
!
"p
"r

#
$%

&
'(

z

H (t)
!

z
2

H (t)
2

)

*
+
+

,

-
.
.

(2.l) 

Note that the directionality of 
!p !r > 0

 
v
r

is determined by the SIGN of the pressure gradient. If 
then the flow will be INwards (and vice-versa). 

(d) 
inflow through an ann

 
!H (t)

Use conservation of mass to write down a kinematic condition that relates the volumetric
ulus of radius r < R and the axial displacement rate of the disk. 

Use this result plus appropriate boundary conditions to find an equation for the pressure 
profile across the sample. Is the pressure at the center of the disk greater than or less than 
atmospheric? 

The Navier-Stokes equation in the axial direction yields simply 0 = !
"p

"z
+ #g

r.on of Applying a control vo

so there are only 

hydrostatic variations axially and the pressure is only a functi lume 
to a cylindrical column of fluid of radius r and height H(t) we obtain: 

Using these values we obtain:n dA 

Top surface 

Radial surface 
  

dMcv

dt
+ !r2 !H + vz (r)er"# $%

0

H

& ' er (2!rdz) = 0 (2.2) 

Substituting 2.1 into 2.2 and integrating we obtain: 
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r !H = !
H
2

µ
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H

=
H
3

6µ
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dp

p(r)

p
atm

! =
6µ !H

H
3
rdr

r

R
"

#
$

2.3) 

rearranging we find and integrating radially and applying the boundary 

conditions we finally obtain: 

 

p(r) = p0 !
3µ !H

H
3

R
2 ! r2"

#
$
% (

( ) 
 
!p = p(r = 0) " patm = " 3µ !HR2 H

3 . 
–

 
!H

2.4) 

The pressure thus varies quadratically across the gap. It is minimum at the middle with a 
maximum gage pressure drop of If we compare this 
with our original scaling estimate we find we were off by a factor of 3 only! Note that if we 
change the SIGN of so that we are squeezing the plates together then we get a large positive 
pressure resisting the squeezing. 

(e) Integrating this result for the (gauge) 
force exerted by the fluid on the lower plate n = !ez

pressure across the plate we find that the net viscous
with outwards facing normal( ) acts 

axially upwards on the plate and is given by. 

 

Fv = ! p(r) ! p0[ ]ndA =
0

R

" ! p(r) ! p0[ ](!ez )
0

R

" 2#rdr = !
3#

2
µR4

!H (t)

H (t)
3
ez (2.5) 

Note that this is consistent w

 
µR !H F0 = (!2 3" ) H0 R( )

3

gina expectat
form: 

ith our ori l ions from dimensional analysis also, which 
indicated a functional . 

(f) Assuming that this expression remains valid for all future times and plate separations, we 
can find an expression for the plate separation as a function of time. A force balance on the 
plate gives 

F0 ! Fv = mplate

d
2
H

dt
2

If we ignore the inertial mass of the plate and assume the forces are in quasi-steady equilibrium 
then we find that the motion of the plate is given by 

F0 =
3µ!R4

2H
3

dH

dt
or 2F0

3µ!R40

t
"

#
$ dt =

dH

H
3

H
0

H
"
#
$ (2.6) 

Integrating and evaluating we obtain 

1

H
2
=
1

H0
2
!
4F0t

3"µR4
or H

H0

=
1

1!
4F0H0

2

3"µR4
t

(2.7) 

The 
t
c
= 3!µR4 4F0H0

2

profile thus ‘blows up’ or shows a finite-time singularity at a critical 
time . The equation (2.7) is sketched overleaf: 
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(g) The time-dependent solution obtained in (f) must fail at some point. Use dimensional 
analysis to provide an estimate for a characteristic time τ for this constant force separation 
in terms of the instantaneous position and velocity and thus provide a dimensionless 
constraint for when your solution in (f) is valid. 

 
!H H

 
! ~ lc Vc = H

!H
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H

!H
! " =

3#µR4

2F0H0
2
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H
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4
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R
<
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2F0"

#
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(

1/4

The instantaneous velocity is and the instantaneous position is , the characteristic time scale 
for the flow is thus . You can either evaluate this directly or note from equation 

2.6) that For the flow to be quasi steady flow we require 

substituting for we thus obtain: 
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