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Lecture 5: Output Models 
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Todays Topics 

Output mode
Automat c redraw 
Ant as ng & subp xe render ng 
Co or mode

Today’s lecture continues our look into the mechanics of implementing user interfaces, by looking at 
output in more detail. 

Our goal for these implementation lectures is not to teach any one particular GUI system or toolkit, 
but to give a survey of the issues involved in GUI programming and the range of solutions adopted 
by various systems. Presumably you’ve already encountered at least one GUI toolkit, probably Java 
Swing. These lectures should give you a sense for what’s common and what’s unusual in the toolkit 
you already know, and what you might expect to find when you pick up another GUI toolkit. 
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Three Output Models 

Components 
Graph ca ob ects arranged n a tree w th automat c redraw 
Examp e: Labe ob ect, L ne ob ect 

so ca ed: v ews, nteractors, w dgets, contro s, reta ned 
graph cs 

Strokes 
gh­ eve draw ng pr ves: nes, shapes, curves, text 

Examp e: drawText method, drawL ne method 
so ca ed: vector graph cs, structured graph cs 

xe
2D array of p xe

so ca ed: raster, mage, b tmap 

There are basically three ways to represent the output of a graphical user interface.


Components is the same as the view hierarchy we discussed last week. Parts of the display are

represented by view objects arranged in a spatial hierarchy, with automatic redraw propagating down

the hierarchy. There have been many names for this idea over the years; the GUI community hasn’t

managed to settle on a single preferred term.


Strokes draws output by making calls to high-level drawing primitives, like drawLine,

drawRectangle, drawArc, and drawText.


Pixels regards the screen as an array of pixels and deals with the pixels directly.


All three output models appear in virtually every modern GUI application. The component model

always appears at the very top level, for windows, and often for components within the windows as

well. At some point, we reach the leaves of the view hierarchy, and the leaf views draw themselves

with stroke calls. A graphics package then converts those strokes into pixels displayed on the screen.

For performance reasons, a component may short-circuit the stroke package and draw pixels on the

screen directly. On Windows, for example, video players do this using the DirectX interface to have

direct control over a particular screen rectangle.


What model do each of the following representations use? HTML (component); Postscript laser

printer (stroke input, pixel output); plotter (stroke input and output); PDF (stroke); LCD panel

(pixel).
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Exam ple: Designing a Graph View 

Component mode
Each node and edge s a component 
A node m ght have two subcomponents: c rc e and abe

Stroke mode
Graph v ew draws nes, rectang es and text 

xe mode
Graph v ew has p xe mages of the nodes 

Since every application uses all three models, the design question becomes: at which points in your 
application do you want to step down into a lower-level output model? Here’s an example. Suppose 
you want to build a view that displays a graph of nodes and edges. 

One approach would represent each node and edge in the graph by a component. Each node in turn 
might have two components, a rectangle and a label. Eventually, you’ll get down to primitive 
components available in your GUI toolkit. Most GUI toolkits provide a label component; most don’t 
provide a primitive circle component. One notable exception is Amulet, which has component 
equivalents for all the common drawing primitives. This would be a pure component model, at 
least from your application’s point of view – stroke output and pixel output would still happen, but 
inside primitive components that you took from the library. 

Alternatively, the top-level window might have no subcomponents. Instead, it would draw the entire 
graph by a sequence of stroke calls: drawRectangle for the node outlines, drawText for the labels, 
drawLine for the edges. This would be a pure stroke model. 
Finally, your graph view might bypass stroke drawing and set pixels in the window directly. The 
text labels might be assembled by copying character images to the screen. This pure pixel model is 
rarely used nowadays, because it’s the most work for the programmer, but it used to be the only way 
to program graphics. 

Hybrid models for the graph view are certainly possible, in which some parts of the output use one 
model, and others use another model. The graph view might use components for nodes, but draw the 
edges itself as strokes. It might draw all the lines itself, but use label components for the text. 
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ssues in Choosing Output Models 

Layout 
Input 
Redraw 
Draw ng order 
Heavywe ght ob ects 
Dev ce dependence 

Layout: Components remember where they were put, and draw themselves there. They also support 
automatic layout. With stroke or pixel models, you have to figure out (at drawing time) where each 
piece goes, and put it there. 

Input: Components participate in event dispatch and propagation, and the system automatically does 
hit-testing (determining whether the mouse is over the component when an event occurs) for 
components, but not for strokes. If a graph node is a component, then it can receive its own click and 
drag events. If you stroked the node instead, then you have to write code to determine which node 
was clicked or dragged. 

Redraw: An automatic redraw algorithm means that components redraw themselves automatically 
when they have to. Furthermore, the redraw algorithm is efficient: it only redraws components 
whose extents intersect the damaged region. The stroke or pixel model would have to do this test by 
hand. In practice, most stroked components don’t bother, simply redrawing everything whenever 
some part of the view needs to be redrawn. 

Drawing order: It’s easy for a parent to draw before (underneath) or after (on top of) all of its 
children. But it’s not easy to interleave parent drawing with child drawing. So if you’re using a 
hybrid model, with some parts of your view represented as components and others as strokes, then 
the components and strokes generally fall in two separate layers, and you can’t have any complicated 
z-ordering relationships between strokes and components. 

Heavyweight objects: Every component must be an object (and even an object with no fields costs 
about 20 bytes in Java). As we’ve seen, the view hierarchy is overloaded not just with drawing 
functions but also with event dispatch, automatic redraw, and automatic layout, so that further bulks 
up the class. The flyweight pattern used by InterView’s Glyphs can reduce this cost somewhat. But 
views derived from large amounts of data – say, a 100,000-node graph – generally can’t use a 
component model. 

Device dependence: The stroke model is largely device independent. In fact, it’s useful not just for 
displaying to screens, but also to printers, which have dramatically different resolution. The pixel 
model, on the other hand, is extremely device dependent. A directly-mapped pixel image won’t look 
the same on a screen with a different resolution. 
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Draw ing in the Com ponent Model 

Draw ng goes top down 
Draw se us ng strokes or p xe
For each ch d component, 

If ch ntersects c pp ng reg on then 
ntersect c pp ng reg on w th ch s bound ng box 
recurs ve y draw ch d w th c p reg on = ntersect on 

p reg on 

Here’s how drawing works in the component model. Drawing is a top-down process: starting from 
the root of the component tree, each component draws itself, then draws each of its children 
recursively. The process is optimized by passing a clipping region to each component, indicating 
the area of the screen that needs to be drawn. Children that do not intersect the clipping region are 
simply skipped, not drawn. In the example above, nodes B and C would not need to be drawn. When 
a component partially intersects the clipping region, it must be drawn – but any strokes or pixels it 
draws when the clipping region is in effect will be masked against the clip region, so that only pixels 
falling inside the region actually make it onto the screen. 

For the root component, the clipping region might be the entire screen. As drawing descends the 
component tree, however, the clipping region is intersected with each component’s bounding box. 
So the clipping region for a component deep in the tree is the intersection of the bounding boxes of 
its ancestors. 

For high performance, the clipping region is normally rectangular, using component bounding boxes 
rather than the components’ actual shape. But it doesn’t have to be that way. A clipping region can 
be an arbitrary shape on the screen. This can be very useful for visual effects: e.g., setting a string of 
text as your clipping region, and then painting an image through it like a stencil. Postscript was the 
first stroke model to allow this kind of nonrectangular clip region. Now many graphics toolkits 
support nonrectangular clip regions. For example, on Microsoft Windows and X Windows, you can 
create nonrectangular windows, which clip their children into a nonrectangular region. 
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Dam age and Autom atic Redraw 

damaged reg on 

When a component needs to change its appearance, it doesn’t repaint itself directly. It can’t, because 
the drawing process has to occur top-down through the component hierarchy: the component’s 
ancestors and older siblings need to have a chance to paint themselves underneath it. (So, in Java, 
even though a component can call its paint() method directly, you shouldn’t do it!) 

Instead, the component asks the graphics system to repaint it at some time in the future. This request 
includes a damaged region, which is the part of the screen that needs to be repainted. Often, this is 
just the entire bounding box of the component; but complex components might figure out which part 
of the screen corresponds to the part of the model that changed, so that only that part is damaged. 

The repaint request is then queued for later. Multiple pending repaint requests from different 
components are consolidated into a single damaged region, which is often represented just as a 
rectangle – the bounding box of all the damaged regions requested by individual components. That 
means that undamaged screen area is being considered damaged, but there’s a tradeoff between the 
complexity of the damaged region representation and the cost of repainting. 

Eventually – usually after the system has handled all the input events (mouse and keyboard) waiting 
on the queue -- the repaint request is finally satisfied, by setting the clipping region to the damaged 
region and redrawing the component tree from the root. 
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Naïve Redraw Causes Flashing 

Efects 

Determine 
damaged region 

Redraw parent 
children blink out!

Redraw children 

Ob ect moves 

There’s an unfortunate side-effect of the automatic damage/redraw algorithm. If we draw a 
component tree directly to the screen, then moving a component can make the screen appear to flash 
– objects flickering while they move, and nearby objects flickering as well. 

When an object moves, it needs to be erased from its original position and drawn in its new position. 
The erasure is done by redrawing all the objects in the view hierarchy that intersect this damaged 
region. If the drawing is done directly on the screen, this means that all the objects in the damaged 
region temporarily disappear, before being redrawn. Depending on how screen refreshes are timed 
with respect to the drawing, and how long it takes to draw a complicated object or multiple layers of 
the hierarchy, these partial redraws may be briefly visible on the monitor, causing a perceptible 
flicker. 
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Double-Bufering 

Doub e-buffer ng so ves the f ash ng 
prob em 

Screen 

Memory 
buffer 

Double-buffering solves this flickering problem. An identical copy of the screen contents is kept in 
a memory buffer. (In practice, this may be only the part of the screen belonging to some subtree of 
the view hierarchy that cares about double-buffering.) This memory buffer is used as the drawing 
surface for the automatic damage/redraw algorithm. After drawing is complete, the damaged region 
is just copied to screen as a block of pixels. Double-buffering reduces flickering for two reasons: 
first, because the pixel copy is generally faster than redrawing the view hierarchy, so there’s less 
chance that a screen refresh will catch it half-done; and second, because unmoving objects that 
happen to be caught, as innocent victims, in the damaged region are never erased from the screen, 
only from the memory buffer. 

It’s a waste for every individual view to double-buffer itself. If any of your ancestors is double-
buffered, then you’ll derive the benefit of it. So double-buffering is usually applied to top-level 
windows. 

Why is it called double-buffering? Because it used to be implemented by two interchangeable 
buffers in video memory. While one buffer was showing, you’d draw the next frame of animation 
into the other buffer. Then you’d just tell the video hardware to switch which buffer it was showing, 
a very fast operation that required no copying and was done during the CRT’s vertical refresh 
interval so it produced no flicker at all. 
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Stroke Model 

Draw ng surface 
so ca ed drawab X W ndows , GDI MS W

Screen, memory buffer, pr nt dr ver, f e, remote screen 
Graph cs context 

Encapsu ates draw ng parameters so they don t have to be 
passed w th each ca to a draw ng pr ve 
Font, co or, ne w dth, f pattern, etc. 

Coord nate system 
Or n, sca e, rotat on 
pp ng reg on 

Draw ng pr ves 
ne, c rc e, e pse, arc, rectang e, text, po ne, shapes 

We’ve already considered the component model in some detail. So now, let’s look at the stroke 
model. 

Every stroke model has some notion of a drawing surface. The screen is only one place where 
drawing might go. Another common drawing surface is a memory buffer, which is an array of pixels 
just like the screen. Unlike the screen, however, a memory buffer can have arbitrary dimensions. 
The ability to draw to a memory buffer is essential for double-buffering. Another target is a printer 
driver, which forwards the drawing instructions on to a printer. Although most printers have a pixel 
model internally (when the ink actually hits the paper), the driver often uses a stroke model to 
communicate with the printer, for compact transmission. Postscript, for example, is a stroke model. 

Most stroke models also include some kind of a graphics context, an object that bundles up drawing 
parameters like color, line properties (width, end cap, join style), fill properties (pattern), and font. 

The stroke model may also provide a current coordinate system, which can be translated, scaled, 
and rotated around the drawing surface. We’ve already discussed the clipping region, which acts 
like a stencil for the drawing. Finally, a stroke model must provide a set of drawing primitives, 
function calls that actually produce graphical output. 

Many systems combine all these responsibilities into a single object. Java’s Graphics object is a 
good example of this approach. In other toolkits, the drawing surface and graphics context are 
independent objects that are passed along with drawing calls. 

When state like graphics context, coordinate system, and clipping region are embedded in the 
drawing surface, the surface must provide some way to save and restore the context. A key reason 
for this is so that parent views can pass the drawing surface down to a child’s draw method without 
fear that the child will change the graphics context. In Java, for example, the context can be saved 
by Graphics.create(), which makes a copy of the Graphics object. Notice that this only duplicates the 
graphics context; it doesn’t duplicate the drawing surface, which is still the same. 
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Converting Strokes to Pixels 

Is 0,0 the center of the top- eft p xe , or t the upper eft 
corner of the p xe

MS W n: center of p xe
Java: upper eft corner 

Where ne 0,0 10,0 actua y drawn? 
MS W n: endpo nt p xe exc uded 
Java Graph cs: pen hangs down and r ght 
Java Graph cs2D: ant ased pen, opt ona xe ad ustments 
made for compat ty 

Where s empty rectang 0,0 10,10 drawn? 
MSW n: connect ng those p xe
Java: extends one row be ow and one co umn r ght 

Where s f ed rectang 0,0 10,10 drawn? 
MSW n: 121 p xe
Java: 100 p xe

When you’re using a stroke model, it’s important to understand how the strokes are actually 
converted into pixels. Different platforms make different choices. 

One question concerns how stroke coordinates, which represent zero-dimensional points, are 
translated into pixel coordinates, which are 2-dimensional squares. Microsoft Windows places the 
stroke coordinate at the center of the corresponding pixel; Java’s stroke model places the stroke 
coordinates between pixels. 

The other questions concern which pixels are actually drawn when you request a line or a rectangle. 
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Antialiasing and Subpixel Rendering 

mp Ant ased Subp xe render ng 

It’s beyond the scope of this lecture to talk about algorithms for converting a stroke into pixels. But 
you should be aware of some important techniques for making strokes look good. 

One of these techniques is antialiasing, which is a way to make an edge look smoother. Instead of 
making a binary decision between whether to color a pixel black or white, antialiasing uses a shade 
of gray whose value varies depending on how much of the pixel is covered by the edge. In practice, 
the edge is between two arbitrary colors, not just black and white, so antialiasing chooses a point on 
the gradient between those two colors. The overall effect is a fuzzier but smoother edge. 

Subpixel rendering takes this a step further. Every pixel on an LCD screen consists of three discrete 
pixels side-by-side: red, green, and blue. So we can get a horizontal resolution which is three times 
the nominal pixel resolution of the screen, simply by choosing the colors of the pixels along the edge 
so that the appropriate subpixels are light or dark. It only works on LCD screens, not CRTs, because 
CRT pixels are often arranged in triangles, and because CRTs are analog, so the blue in a single 
“pixel” usually consists of a bunch of blue phosphor dots (interspersed with green and red phosphor 
dots. You also have to be careful to smooth out the edge to avoid color fringing effects on perfectly 
vertical edges. And it works best for high-contrast edges, like this edge between black and white. 
Subpixel rendering is ideal for text rendering, since text is usually small, high-contrast, and benefits 
the most from a boost in horizontal resolution. Windows XP includes ClearType, an implementation 
of subpixel rendering for Windows fonts. For more about subpixel rendering, see Steve Gibson, 
“Sub-Pixel Font Rendering Technology”, http://grc.com/cleartype.htm 
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Color Models 

RGB: cube 
Red, green, b ue 

HSV: hexagona cone 
Hue: k nd of co or 

Ang e around cone 
Saturat on: amount of pure co or 

0% = gray, 100% = pure co or 
Va ue: br ghtness 

0% = dark, 100% = br ght 
HLS: doub e-hexagona cone 

Hue, ghtness, saturat on 
Pu s up center of HSV mode , so that on y wh te has ghtness 1.0 
and pure co ors have ghtness 0.5 

Cyan-Magenta-Ye ow -B ack
Used for pr nt ng, where p gments absorb wave engths nstead of 
generat ng them 

We learned a bit about how humans perceive color when we talked about human capabilities. Now

let’s look at how colors are represented in GUI software.


At the lowest level, the RGB model rules. The RGB model is a unit cube, with (0,0,0) corresponding

to black, (1, 1, 1) corresponding to white, and the three dimensions measuring levels of red, green,

and blue. The RGB model is used directly by CRT and LCD monitors for display, since each pixel

in a monitor has separate red, green, and blue components.


HSV (hue, saturation value) is a better model for how humans perceive color, and more useful for

building usable interfaces. HSV is a cone. We’ve already encountered hue and value in our

discussion of visual variables. Saturation is the degree of color, as opposed to grayness. Colors with

zero saturation are shades of gray; colors with 100% saturation are pure colors.


HLS (hue, lightness, saturation) is a symmetrical relative of the HSV model, which is elegant. See

the pictures on the next page.


Finally, the CMYK (cyan, magenta, yellow, and sometimes black) is similar to the RGB model, but

used for print colors.
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Transparency 

Alpha s a p xe s transparency 
from 0.0 transparent to 1.0 opaque
so each p xe has red, green, b ue, and 

pha va ues 

Uses for a pha 
Ant as ng 
Nonrectangu ar mages 
Trans ucent components 

pp ng reg ons w th ant ased edges 

Modern color models add a fourth channel: the pixel’s alpha value, which is its transparency.

Simple image formats like GIF support only two values of alpha: 1 (opaque) or 0 (transparent). PNG

has better support, allowing image pixels to be translucent, with alpha values between 0 and 1.
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