
ll i l i 1Fa 2004 6.831 UI Des gn and Imp ementat on

Lecture 5: Output Models

1

ll i l i 2

’

• ls
• i
• iali i i l i
• l ls

Fa 2004 6.831 UI Des gn and Imp ementat on

Todays Topics

Output mode
Automat c redraw
Ant as ng & subp xe render ng
Co or mode

Today’s lecture continues our look into the mechanics of implementing user interfaces, by looking at
output in more detail.

Our goal for these implementation lectures is not to teach any one particular GUI system or toolkit,
but to give a survey of the issues involved in GUI programming and the range of solutions adopted
by various systems. Presumably you’ve already encountered at least one GUI toolkit, probably Java
Swing. These lectures should give you a sense for what’s common and what’s unusual in the toolkit
you already know, and what you might expect to find when you pick up another GUI toolkit.

2

ll i l i 3

•
œ i l j i i i
œ l l j i j
œ Al ll i i i l i

i
•
œ Hi l l i imiti li
œ l () i ()
œ Al ll i i

• Pi ls
œ i ls
œ Al ll i i

Fa 2004 6.831 UI Des gn and Imp ementat on

Three Output Models

Components
Graph ca ob ects arranged n a tree w th automat c redraw
Examp e: Labe ob ect, L ne ob ect

so ca ed: v ews, nteractors, w dgets, contro s, reta ned
graph cs

Strokes
gh­ eve draw ng pr ves: nes, shapes, curves, text

Examp e: drawText method, drawL ne method
so ca ed: vector graph cs, structured graph cs

xe
2D array of p xe

so ca ed: raster, mage, b tmap

There are basically three ways to represent the output of a graphical user interface.

Components is the same as the view hierarchy we discussed last week. Parts of the display are

represented by view objects arranged in a spatial hierarchy, with automatic redraw propagating down

the hierarchy. There have been many names for this idea over the years; the GUI community hasn’t

managed to settle on a single preferred term.

Strokes draws output by making calls to high-level drawing primitives, like drawLine,

drawRectangle, drawArc, and drawText.

Pixels regards the screen as an array of pixels and deals with the pixels directly.

All three output models appear in virtually every modern GUI application. The component model

always appears at the very top level, for windows, and often for components within the windows as

well. At some point, we reach the leaves of the view hierarchy, and the leaf views draw themselves

with stroke calls. A graphics package then converts those strokes into pixels displayed on the screen.

For performance reasons, a component may short-circuit the stroke package and draw pixels on the

screen directly. On Windows, for example, video players do this using the DirectX interface to have

direct control over a particular screen rectangle.

What model do each of the following representations use? HTML (component); Postscript laser

printer (stroke input, pixel output); plotter (stroke input and output); PDF (stroke); LCD panel

(pixel).

3

ll i l i 4

• l
œ i
œ i i l l l

• l
œ i li l

• Pi l l
œ i i l i

A

C

B

Fa 2004 6.831 UI Des gn and Imp ementat on

Exam ple: Designing a Graph View

Component mode
Each node and edge s a component
A node m ght have two subcomponents: c rc e and abe

Stroke mode
Graph v ew draws nes, rectang es and text

xe mode
Graph v ew has p xe mages of the nodes

Since every application uses all three models, the design question becomes: at which points in your
application do you want to step down into a lower-level output model? Here’s an example. Suppose
you want to build a view that displays a graph of nodes and edges.

One approach would represent each node and edge in the graph by a component. Each node in turn
might have two components, a rectangle and a label. Eventually, you’ll get down to primitive
components available in your GUI toolkit. Most GUI toolkits provide a label component; most don’t
provide a primitive circle component. One notable exception is Amulet, which has component
equivalents for all the common drawing primitives. This would be a pure component model, at
least from your application’s point of view – stroke output and pixel output would still happen, but
inside primitive components that you took from the library.

Alternatively, the top-level window might have no subcomponents. Instead, it would draw the entire
graph by a sequence of stroke calls: drawRectangle for the node outlines, drawText for the labels,
drawLine for the edges. This would be a pure stroke model.
Finally, your graph view might bypass stroke drawing and set pixels in the window directly. The
text labels might be assembled by copying character images to the screen. This pure pixel model is
rarely used nowadays, because it’s the most work for the programmer, but it used to be the only way
to program graphics.

Hybrid models for the graph view are certainly possible, in which some parts of the output use one
model, and others use another model. The graph view might use components for nodes, but draw the
edges itself as strokes. It might draw all the lines itself, but use label components for the text.

4

ll i l i 5

I

•

•

•

• i
• i j
• i

Fa 2004 6.831 UI Des gn and Imp ementat on

ssues in Choosing Output Models

Layout
Input
Redraw
Draw ng order
Heavywe ght ob ects
Dev ce dependence

Layout: Components remember where they were put, and draw themselves there. They also support
automatic layout. With stroke or pixel models, you have to figure out (at drawing time) where each
piece goes, and put it there.

Input: Components participate in event dispatch and propagation, and the system automatically does
hit-testing (determining whether the mouse is over the component when an event occurs) for
components, but not for strokes. If a graph node is a component, then it can receive its own click and
drag events. If you stroked the node instead, then you have to write code to determine which node
was clicked or dragged.

Redraw: An automatic redraw algorithm means that components redraw themselves automatically
when they have to. Furthermore, the redraw algorithm is efficient: it only redraws components
whose extents intersect the damaged region. The stroke or pixel model would have to do this test by
hand. In practice, most stroked components don’t bother, simply redrawing everything whenever
some part of the view needs to be redrawn.

Drawing order: It’s easy for a parent to draw before (underneath) or after (on top of) all of its
children. But it’s not easy to interleave parent drawing with child drawing. So if you’re using a
hybrid model, with some parts of your view represented as components and others as strokes, then
the components and strokes generally fall in two separate layers, and you can’t have any complicated
z-ordering relationships between strokes and components.

Heavyweight objects: Every component must be an object (and even an object with no fields costs
about 20 bytes in Java). As we’ve seen, the view hierarchy is overloaded not just with drawing
functions but also with event dispatch, automatic redraw, and automatic layout, so that further bulks
up the class. The flyweight pattern used by InterView’s Glyphs can reduce this cost somewhat. But
views derived from large amounts of data – say, a 100,000-node graph – generally can’t use a
component model.

Device dependence: The stroke model is largely device independent. In fact, it’s useful not just for
displaying to screens, but also to printers, which have dramatically different resolution. The pixel
model, on the other hand, is extremely device dependent. A directly-mapped pixel image won’t look
the same on a screen with a different resolution.

5

ll i l i 6

• i
œ lf (i i ls)
œ il
• ild i li i i

œ i li i i i ild‘ i
œ i l il i li i i i

A

C

B cli i

Fa 2004 6.831 UI Des gn and Imp ementat on

Draw ing in the Com ponent Model

Draw ng goes top down
Draw se us ng strokes or p xe
For each ch d component,

If ch ntersects c pp ng reg on then
ntersect c pp ng reg on w th ch s bound ng box
recurs ve y draw ch d w th c p reg on = ntersect on

p reg on

Here’s how drawing works in the component model. Drawing is a top-down process: starting from
the root of the component tree, each component draws itself, then draws each of its children
recursively. The process is optimized by passing a clipping region to each component, indicating
the area of the screen that needs to be drawn. Children that do not intersect the clipping region are
simply skipped, not drawn. In the example above, nodes B and C would not need to be drawn. When
a component partially intersects the clipping region, it must be drawn – but any strokes or pixels it
draws when the clipping region is in effect will be masked against the clip region, so that only pixels
falling inside the region actually make it onto the screen.

For the root component, the clipping region might be the entire screen. As drawing descends the
component tree, however, the clipping region is intersected with each component’s bounding box.
So the clipping region for a component deep in the tree is the intersection of the bounding boxes of
its ancestors.

For high performance, the clipping region is normally rectangular, using component bounding boxes
rather than the components’ actual shape. But it doesn’t have to be that way. A clipping region can
be an arbitrary shape on the screen. This can be very useful for visual effects: e.g., setting a string of
text as your clipping region, and then painting an image through it like a stencil. Postscript was the
first stroke model to allow this kind of nonrectangular clip region. Now many graphics toolkits
support nonrectangular clip regions. For example, on Microsoft Windows and X Windows, you can
create nonrectangular windows, which clip their children into a nonrectangular region.

6

C

ll i l i 7

A

C

B
A

D

B
A

B

i

Fa 2004 6.831 UI Des gn and Imp ementat on

Dam age and Autom atic Redraw

damaged reg on

When a component needs to change its appearance, it doesn’t repaint itself directly. It can’t, because
the drawing process has to occur top-down through the component hierarchy: the component’s
ancestors and older siblings need to have a chance to paint themselves underneath it. (So, in Java,
even though a component can call its paint() method directly, you shouldn’t do it!)

Instead, the component asks the graphics system to repaint it at some time in the future. This request
includes a damaged region, which is the part of the screen that needs to be repainted. Often, this is
just the entire bounding box of the component; but complex components might figure out which part
of the screen corresponds to the part of the model that changed, so that only that part is damaged.

The repaint request is then queued for later. Multiple pending repaint requests from different
components are consolidated into a single damaged region, which is often represented just as a
rectangle – the bounding box of all the damaged regions requested by individual components. That
means that undamaged screen area is being considered damaged, but there’s a tradeoff between the
complexity of the damaged region representation and the cost of repainting.

Eventually – usually after the system has handled all the input events (mouse and keyboard) waiting
on the queue -- the repaint request is finally satisfied, by setting the clipping region to the damaged
region and redrawing the component tree from the root.

7

ll i l i 8

f

()

j

Fa 2004 6.831 UI Des gn and Imp ementat on

Naïve Redraw Causes Flashing

Efects

Determine
damaged region

Redraw parent
children blink out!

Redraw children

Ob ect moves

There’s an unfortunate side-effect of the automatic damage/redraw algorithm. If we draw a
component tree directly to the screen, then moving a component can make the screen appear to flash
– objects flickering while they move, and nearby objects flickering as well.

When an object moves, it needs to be erased from its original position and drawn in its new position.
The erasure is done by redrawing all the objects in the view hierarchy that intersect this damaged
region. If the drawing is done directly on the screen, this means that all the objects in the damaged
region temporarily disappear, before being redrawn. Depending on how screen refreshes are timed
with respect to the drawing, and how long it takes to draw a complicated object or multiple layers of
the hierarchy, these partial redraws may be briefly visible on the monitor, causing a perceptible
flicker.

8

ll i l i 9

f

• l i l l i
l

Fa 2004 6.831 UI Des gn and Imp ementat on

Double-Bufering

Doub e-buffer ng so ves the f ash ng
prob em

Screen

Memory
buffer

Double-buffering solves this flickering problem. An identical copy of the screen contents is kept in
a memory buffer. (In practice, this may be only the part of the screen belonging to some subtree of
the view hierarchy that cares about double-buffering.) This memory buffer is used as the drawing
surface for the automatic damage/redraw algorithm. After drawing is complete, the damaged region
is just copied to screen as a block of pixels. Double-buffering reduces flickering for two reasons:
first, because the pixel copy is generally faster than redrawing the view hierarchy, so there’s less
chance that a screen refresh will catch it half-done; and second, because unmoving objects that
happen to be caught, as innocent victims, in the damaged region are never erased from the screen,
only from the memory buffer.

It’s a waste for every individual view to double-buffer itself. If any of your ancestors is double-
buffered, then you’ll derive the benefit of it. So double-buffering is usually applied to top-level
windows.

Why is it called double-buffering? Because it used to be implemented by two interchangeable
buffers in video memory. While one buffer was showing, you’d draw the next frame of animation
into the other buffer. Then you’d just tell the video hardware to switch which buffer it was showing,
a very fast operation that required no copying and was done during the CRT’s vertical refresh
interval so it produced no flicker at all.

9

ll i l i

• i
œ Al ll le (i) (in)
œ i i il

• i
œ l i ‘

i ll i imiti
œ l li i ill

• i
œ igi l i

• Cli i i
• i imiti
œ Li i l lli l lyli

Fa 2004 6.831 UI Des gn and Imp ementat on 10

Stroke Model

Draw ng surface
so ca ed drawab X W ndows , GDI MS W

Screen, memory buffer, pr nt dr ver, f e, remote screen
Graph cs context

Encapsu ates draw ng parameters so they don t have to be
passed w th each ca to a draw ng pr ve
Font, co or, ne w dth, f pattern, etc.

Coord nate system
Or n, sca e, rotat on
pp ng reg on

Draw ng pr ves
ne, c rc e, e pse, arc, rectang e, text, po ne, shapes

We’ve already considered the component model in some detail. So now, let’s look at the stroke
model.

Every stroke model has some notion of a drawing surface. The screen is only one place where
drawing might go. Another common drawing surface is a memory buffer, which is an array of pixels
just like the screen. Unlike the screen, however, a memory buffer can have arbitrary dimensions.
The ability to draw to a memory buffer is essential for double-buffering. Another target is a printer
driver, which forwards the drawing instructions on to a printer. Although most printers have a pixel
model internally (when the ink actually hits the paper), the driver often uses a stroke model to
communicate with the printer, for compact transmission. Postscript, for example, is a stroke model.

Most stroke models also include some kind of a graphics context, an object that bundles up drawing
parameters like color, line properties (width, end cap, join style), fill properties (pattern), and font.

The stroke model may also provide a current coordinate system, which can be translated, scaled,
and rotated around the drawing surface. We’ve already discussed the clipping region, which acts
like a stencil for the drawing. Finally, a stroke model must provide a set of drawing primitives,
function calls that actually produce graphical output.

Many systems combine all these responsibilities into a single object. Java’s Graphics object is a
good example of this approach. In other toolkits, the drawing surface and graphics context are
independent objects that are passed along with drawing calls.

When state like graphics context, coordinate system, and clipping region are embedded in the
drawing surface, the surface must provide some way to save and restore the context. A key reason
for this is so that parent views can pass the drawing surface down to a child’s draw method without
fear that the child will change the graphics context. In Java, for example, the context can be saved
by Graphics.create(), which makes a copy of the Graphics object. Notice that this only duplicates the
graphics context; it doesn’t duplicate the drawing surface, which is still the same.

10

ll i l i

• () l i l is i l
i l?

œ i i l
œ l

• is li () œ () ll
œ i i i l l
œ i i
œ i iali i l ² pi l j

ibili
• i le () œ ()

œ i i i ls
œ l l i

• i ill le () œ ()
œ i i ls
œ i ls

Fa 2004 6.831 UI Des gn and Imp ementat on 11

Converting Strokes to Pixels

Is 0,0 the center of the top- eft p xe , or t the upper eft
corner of the p xe

MS W n: center of p xe
Java: upper eft corner

Where ne 0,0 10,0 actua y drawn?
MS W n: endpo nt p xe exc uded
Java Graph cs: pen hangs down and r ght
Java Graph cs2D: ant ased pen, opt ona xe ad ustments
made for compat ty

Where s empty rectang 0,0 10,10 drawn?
MSW n: connect ng those p xe
Java: extends one row be ow and one co umn r ght

Where s f ed rectang 0,0 10,10 drawn?
MSW n: 121 p xe
Java: 100 p xe

When you’re using a stroke model, it’s important to understand how the strokes are actually
converted into pixels. Different platforms make different choices.

One question concerns how stroke coordinates, which represent zero-dimensional points, are
translated into pixel coordinates, which are 2-dimensional squares. Microsoft Windows places the
stroke coordinate at the center of the corresponding pixel; Java’s stroke model places the stroke
coordinates between pixels.

The other questions concern which pixels are actually drawn when you request a line or a rectangle.

11

ll i l i

Si le iali i l i

Fa 2004 6.831 UI Des gn and Imp ementat on 12

Antialiasing and Subpixel Rendering

mp Ant ased Subp xe render ng

It’s beyond the scope of this lecture to talk about algorithms for converting a stroke into pixels. But
you should be aware of some important techniques for making strokes look good.

One of these techniques is antialiasing, which is a way to make an edge look smoother. Instead of
making a binary decision between whether to color a pixel black or white, antialiasing uses a shade
of gray whose value varies depending on how much of the pixel is covered by the edge. In practice,
the edge is between two arbitrary colors, not just black and white, so antialiasing chooses a point on
the gradient between those two colors. The overall effect is a fuzzier but smoother edge.

Subpixel rendering takes this a step further. Every pixel on an LCD screen consists of three discrete
pixels side-by-side: red, green, and blue. So we can get a horizontal resolution which is three times
the nominal pixel resolution of the screen, simply by choosing the colors of the pixels along the edge
so that the appropriate subpixels are light or dark. It only works on LCD screens, not CRTs, because
CRT pixels are often arranged in triangles, and because CRTs are analog, so the blue in a single
“pixel” usually consists of a bunch of blue phosphor dots (interspersed with green and red phosphor
dots. You also have to be careful to smooth out the edge to avoid color fringing effects on perfectly
vertical edges. And it works best for high-contrast edges, like this edge between black and white.
Subpixel rendering is ideal for text rendering, since text is usually small, high-contrast, and benefits
the most from a boost in horizontal resolution. Windows XP includes ClearType, an implementation
of subpixel rendering for Windows fonts. For more about subpixel rendering, see Steve Gibson,
“Sub-Pixel Font Rendering Technology”, http://grc.com/cleartype.htm

12

ll i l i

•
œ l

• l
œ i l

• l
œ i l

• l
œ l i

• i
• l l

œ li i
œ ll l l i li

l li
• ll (l)

œ i i i l i
i

Fa 2004 6.831 UI Des gn and Imp ementat on 13

Color Models

RGB: cube
Red, green, b ue

HSV: hexagona cone
Hue: k nd of co or

Ang e around cone
Saturat on: amount of pure co or

0% = gray, 100% = pure co or
Va ue: br ghtness

0% = dark, 100% = br ght
HLS: doub e-hexagona cone

Hue, ghtness, saturat on
Pu s up center of HSV mode , so that on y wh te has ghtness 1.0
and pure co ors have ghtness 0.5

Cyan-Magenta-Ye ow -B ack
Used for pr nt ng, where p gments absorb wave engths nstead of
generat ng them

We learned a bit about how humans perceive color when we talked about human capabilities. Now

let’s look at how colors are represented in GUI software.

At the lowest level, the RGB model rules. The RGB model is a unit cube, with (0,0,0) corresponding

to black, (1, 1, 1) corresponding to white, and the three dimensions measuring levels of red, green,

and blue. The RGB model is used directly by CRT and LCD monitors for display, since each pixel

in a monitor has separate red, green, and blue components.

HSV (hue, saturation value) is a better model for how humans perceive color, and more useful for

building usable interfaces. HSV is a cone. We’ve already encountered hue and value in our

discussion of visual variables. Saturation is the degree of color, as opposed to grayness. Colors with

zero saturation are shades of gray; colors with 100% saturation are pure colors.

HLS (hue, lightness, saturation) is a symmetrical relative of the HSV model, which is elegant. See

the pictures on the next page.

Finally, the CMYK (cyan, magenta, yellow, and sometimes black) is similar to the RGB model, but

used for print colors.

13

ll i l i

• i i l‘
œ () ()
œ i l l

al l

• l
œ iali i
œ l i
œ l
œ Cli i i i iali

Fa 2004 6.831 UI Des gn and Imp ementat on 15

Transparency

Alpha s a p xe s transparency
from 0.0 transparent to 1.0 opaque
so each p xe has red, green, b ue, and

pha va ues

Uses for a pha
Ant as ng
Nonrectangu ar mages
Trans ucent components

pp ng reg ons w th ant ased edges

Modern color models add a fourth channel: the pixel’s alpha value, which is its transparency.

Simple image formats like GIF support only two values of alpha: 1 (opaque) or 0 (transparent). PNG

has better support, allowing image pixels to be translucent, with alpha values between 0 and 1.

15

