
ll i l i 1Fa 2004 6.831 UI Des gn and Imp ementat on

Lecture 15: User Testing

1

Fall 2004 6.831 UI Design and Implementation 2

UIH allofFam e or Sham e?

Today’s candidate for the Hall of Fame & Shame is the Alt-Tab window switching interface in
Microsoft Windows. This interface has been copied by a number of desktop systems, including
KDE, Gnome, and even Mac OS X.

The first observation to make is that this interface is designed only for keyboard interaction. Alt-Tab
is the only way to make it appear; pressing Tab (or Shift-Tab) is the only way to cycle through the
choices. If you try to click on this window with the mouse, it vanishes. The interface is weak on
affordances, and gives the user little help in remembering how to use it.

But that’s OK, because the Windows taskbar is the primary interface for window switching,
providing much better visibility and affordances. This Alt-Tab interface is designed as a shortcut,
and we should evaluate it as such.

It’s pleasantly simple, both in graphic design and in operation. Few graphical elements, good
alignment, good balance. The 3D border around the window name could probably be omitted
without any loss.

This interface is a mode (since pressing Tab is switching between windows rather than inserting tabs
into text), but it’s spring-loaded, happening only as long as the Alt button is held down. This spring-
loading also provides good dialog closure.

Is it efficient? A common error, when you’re tabbing quickly, is to overshoot your target window.
You can fix that by cycling around again, but that’s not as reversible as just moving backwards with
a mouse. (You can also back up by holding down Shift when you press Tab, but that’s not well-
communicated by this interface, and it’s tricky to negotiate while you’re holding Alt down.)

There is one common operation that Alt-Tab supports wonderfully: toggling back and forth between
two windows.

2

ll i l i 3

• i
• i
• i l i

Fa 2004 6.831 UI Des gn and Imp ementat on

Today’s Topics

User test ng
Eth cs
Format ve eva uat on

In this lecture and the next one, we’ll talk about user testing: putting an interface in front of real
users. There are several kinds of user testing, but all of them by definition involve human beings,
who are thinking, breathing individuals with rights and feelings. When we enlist the assistance of
real people in interface testing, we take on some special responsibilities. So first we’ll talk about the
ethics of user testing, which apply regardless of what kind of user test you’re doing.

The rest of the lecture will focus on one particular kind of user test: formative evaluation, which is a
user test performed during iterative design with the goal of finding usability problems to fix on the
next design iteration.

Next lecture, we’ll look at another kind of user test, a controlled experiment.

3

ll i l i 4

l is
i i i

i i l i i
lki

Fa 2004 6.831 UI Des gn and Imp ementat on

Review

Design
Task ana ys
Des gn heur st cs

Evaluate
Heur st c eva uat on
Today: User testing

Implement
Prototyp ng

Too ts

Here’s a quick review of the iterative design process, and the parts of it we’ve seen so far.

The only evaluation technique we’ve discussed so far has been heuristic evaluation. Today we’re
looking at user testing, which is more expensive and time-consuming than heuristic evaluation, but
produces better results.

4

ll i l i 5

• i l i
œ Fi l i i i
œ l i l i in l
œ li i i (ili l)

• Fiel
œ Fi l i
œ l i i l i i l l
œ l li i i

• ll i
œ is (i i i)
œ l i i l i i ll l i

œ l i i i (ti i i)

Fa 2004 6.831 UI Des gn and Imp ementat on

Kinds ofUser Tests

Format ve eva uat on
nd prob ems for next terat on of des gn

Eva uates prototype or mp ementat on, ab, on chosen tasks
Qua tat ve observat ons usab ty prob ems
d study

nd prob ems n context
Eva uates work ng mp ementat on, n rea context, on rea tasks
Most y qua tat ve observat ons

Contro ed exper ment
Tests a hypothes e.g., nterface X s faster than nterface Y
Eva uates work ng mp ementat on, n contro ed ab env ronment,
on chosen tasks
Most y quant tat ve observat ons me, error rate, sat sfact on

Here are three common kinds of user tests.

You’ve already done a formative evaluation, on Prototype Testing Day, when you had some of

your classmates test your paper protoypes. The purpose of formative evaluation is finding usability

problems in order to fix them in the next design iteration. Formative evaluation doesn’t need a full

working implementation, but can be done on a variety of prototypes. This kind of user test is usually

done in an environment that’s under your control, like an office or a usability lab. You also choose

the tasks given to users, which are generally realistic (drawn from task analysis, which is based on

observation) but nevertheless fake. The results of formative evaluation are largely qualitative

observations, usually a list of usability problems.

Note that Prototype Testing Day was not the best way to do formative evaluation: first, because your

classmates are probably not representative of your target user population; and second, because we

had artificial time constraints that raised the pressure on users and experimenters, prevented using

substantial tasks, and didn’t allow for much debriefing or discussion after the test. Better user tests

would be use appropriate users and be more relaxed, which we’ll see later in the lecture.

A key problem with formative evaluation is that you have to control too much. Running a test in a

lab environment on tasks of your invention may not tell you enough about how well your interface

will work in a real context on real tasks. A field study can answer these questions, by actually

deploying a working implementation to real users, and then going out to the users’ real environment

and observing how they use it. We won’t say much about field studies in this class.

A third kind of user test is a controlled experiment, whose goal is to test a quantifiable hypothesis

about one or more interfaces. Controlled experiments happen under carefully controlled conditions

using carefully-designed tasks – often more carefully chosen than formative evaluation tasks.

Hypotheses can only be tested by quantitative measurements of usability, like time elapsed, number

of errors, or subjective satisfaction. We’ll talk about how to design controlled experiments in the

next lecture.

5

ll i l i 6

•
œ j i l in

• i i
• ili
• l l i i i i

ll il
• l l i

œ i lvi i i j
cl i
• i i l

j () l
i

Fa 2004 6.831 UI Des gn and Imp ementat on

Ethics ofUser Testing

Users are human beings
Human sub ects have been ser ous y abused
the past

Naz concentrat on camps
Tuskegee syph s study
MIT Ferna d Schoo study: feed ng rad oact ve sotopes
to menta y retarded ch dren
Ya e e ectr c shock study

Research nvo ng user test ng s now sub ect to
ose scrut ny

MIT Comm ttee on Use of Humans as Exper menta
Sub ects COUHES must approve research-re ated user
stud es

Let’s start by talking about some issues that are relevant to all kinds of user testing: ethics. Human
subjects have been horribly abused in the name of science over the past century. Here are some of
the most egregious cases:

In Nazi concentration camps (1940-1945), doctors used prisoners of war, political prisoners, and
Jews as human guinea pigs for horrific experiments. Some experiments tested the limits of human
endurance in extreme cold, low pressures, or exposure. Other experiments intentionally infected
people with massive doses of pathogens, such as typhus; others tested new chemical weapons or new
medical procedures. Thousands of people were killed by these “experiments.”

In the Tuskegee Institute syphilis study (1932-1972), the US government studied the effects of
untreated syphilis in black men in the rural South. In exchange for their participation in the study,
the men were given free health examinations. But they weren’t told that they had syphilis, or that the
disease was potentially fatal. Nor were they given treatment for the disease, even as proven, effective
treatments like penicillin became available. Out of 339 men studied, 28 died directly of syphilis, 100
of related complications. 40 wives were infected, and 19 children were born with congenital
syphilis.

In the 1940s and 1950s, MIT researchers cooperated with the Fernald School for mentally disabled
children in Waverly, Massachusetts to gave radioactive isotopes to some of the children in their milk
and cereal, to study how the isotopes were taken up by the body. Permission letters were obtained
from their parents, but neither parents nor children were warned that radioactive materials were being
used.

In the 1950s, a famous study done at Yale told subjects to give painful electric shocks to another
person. The shocks weren’t real, and the person they were shocking was just an actor. But subjects
weren’t told that fact in advance, and many subjects were genuinely traumatized by the experience:
sweating, trembling, stuttering.

These abuses have led to several reforms. The Nazi-era experiments led to the Nuremberg Code, an
international agreement on the rights of human subjects. The Tuskegee study drove the US
government to take steps to ensure that all federally-funded institutions follow ethical practices in
their use of human subjects. In particular, every experiment involving human subjects must be
reviewed and approved by an ethics committee, usually called an institutional review board. MIT’s
review board is called COUHES.

6

ll i l i 7

• i
• ls li i lli
• i l i j
• li id i
• i i j

Fa 2004 6.831 UI Des gn and Imp ementat on

Pressures on a User

Performance anx ety
Fee ke an nte gence test
Compar ng se f w th other sub ects
Fee ng stup n front of observers
Compet ng w th other sub ects

Experiments involving medical treatments or electric shocks are one thing. But what’s so dangerous
about a computer interface?

Hopefully, nothing – most user testing has minimal physical or psychological risk to the user. But
user testing does put psychological pressure on the user. The user sits in the spotlight, asked to
perform unfamiliar tasks on an unfamiliar (and possibly bad!) interface, in front of an audience of
strangers (at least one experimenter, possibly a roomful of observers, and possibly a video camera).
It’s natural to feel some performance anxiety, or stage fright. “Am I doing it right? Do these people
think I’m dumb for not getting it?” A user may regard the test as a psychology test, or more to the
point, an IQ test. They may be worried about getting a bad score. Their self-esteem may suffer,
particularly if they blame problems they have on themselves, rather than on the user interface.

A programmer with an ironclad ego may scoff at such concerns, but these pressures are real. Jared
Spool, an influential usability consultant, tells a story about the time he saw a user cry during a user
test. It came about from an accumulation of mistakes on the part of the experimenters:

1. the originally-scheduled user didn’t show up, so they just pulled an employee out of the hallway to

do the test;

2. it happened to be her first day on the job;

3. they didn’t tell her what the session was about;

4. she not only knew nothing about the interface to be tested (which is fine and good), but also

nothing about the domain – she wasn’t in the target user population at all;

5. the observers in the room hadn’t been told how to behave (i.e., shut up);

6. one of those observers was her boss;

7. the tasks hadn’t been pilot tested, and the first one was actually impossible.

When she started struggling with the first task, everybody in the room realized how stupid the task

was, and burst out laughing – at their own stupidity, not hers. But she thought they were laughing at

her, and she burst into tears. (story from Carolyn Snyder, Paper Prototyping)

7

ll i l i 8

• Ti
œ ‘ it

•
œ le

•
œ ll ible

• i
œ ‘ i

• l
œ i

Fa 2004 6.831 UI Des gn and Imp ementat on

Treat the User W ith Respect

me
Don t waste

Comfort
Make the user comfortab

Informed consent
Inform the user as fu y as poss

Pr vacy
Preserve the user s pr vacy

Contro
The user can stop at any t me

The basic rule for user testing ethics is respect for the user as a intelligent person with free will and
feelings. We can show respect for the user in 5 ways:

1.	 Respecting their time by not wasting it. Prepare as much as you can in advance, and don’t make
the user jump through hoops that you aren’t actually testing. Don’t make them install the
software or load the test files, for example, unless your test is supposed to measure the usability
of the installation process or file-loading process.

2.	 Do everything you can to make the user comfortable, in order to offset the psychological
pressures of a user test.

3.	 Give the user as much information about the test as they need or want to know, as long as the
information doesn’t bias the test. Don’t hide things from them unnecessarily.

4.	 Preserve the user’s privacy to the maximum degree. Don’t report their performance on the user
test in a way that allows the user to be personally identified.

5.	 The user is always in control, not in the sense that they’re running the user test and deciding
what to do next, but in the sense that the final decision of whether or not to participate remains
theirs, throughout the experiment. Just because they’ve signed a consent form, or sat down in the
room with you, doesn’t mean that they’ve committed to the entire test. A user has the right to
give up the test and leave at any time, no matter how inconvenient it may be for you.

8

ll i l i 9

• Ti
œ Pil ll ial

•
œ — ‘ i ‘ i “
œ — i i lti ‘ l

l i l “
• i
œ — l ill l l i ial.“

• i
œ i
œ i i i i
œ i (l i i)

• l
œ — i “

Fa 2004 6.831 UI Des gn and Imp ementat on

Before a Test

me
ot-test a mater s and tasks

Comfort
We re test ng the system; we re not test ng you.
Any d ff cu es you encounter are the system s fau t. We

need your he p to f nd these prob ems.
Pr vacy

Your test resu ts w be comp ete y conf dent
Informat on

Br ef about purpose of study
Inform about aud otap ng, v deotap ng, other observers
Answer any quest ons beforehand un ess b as ng

Contro
You can stop at any t me.

Let’s look at what you should do before, during, and after a user test to ensure that you’re treating
users with respect.

Long before your first user shows up, you should pilot-test your entire test: all questionnaires,
briefings, tutorials, and tasks. Pilot testing means you get a few people (usually your colleagues) to
act as users in a full-dress rehearsal of the user test. Pilot testing is essential for simplifying and
working the bugs out of your test materials and procedures. It gives you a chance to eliminate
wasted time, streamline parts of the test, fix confusing briefings or training materials, and discover
impossible or pointless tasks. It also gives you a chance to practice your role as an experimenter.
Pilot testing is essential for every user test.

When a user shows up, you should brief them first, introducing the purpose of the application and the
purpose of the test. To make the user comfortable, you should also say the following things (in some
form):

•“Keep in mind that we’re testing the computer system. We’re not testing you.” (comfort)

•“The system is likely to have problems in it that make it hard to use. We need your help to find
those problems.” (comfort)

•“Your test results will be completely confidential.” (privacy)

•“You can stop the test and leave at any time.” (control)

You should also inform the user if the test will be audiotaped, videotaped, or watched by hidden
observers. Any observers actually present in the room should be introduced to the user.

At the end of the briefing, you should ask “Do you have any questions I can answer before we
begin?” Try to answer any questions the user has. Sometimes a user will ask a question that may
bias the experiment: for example, “what does that button do?” You should explain why you can’t
answer that question, and promise to answer it after the test is over.

9

ll i l i

• Ti
œ Elimi

•
œ l l
œ in l i
œ i i
œ Gi i
œ Fi l l i

• i
œ ‘ l ‘ i

• i
œ i (i ‘ i)

• l
œ i
œ i i ly

Fa 2004 6.831 UI Des gn and Imp ementat on 10

During the Test

me
nate unnecessary tasks

Comfort
Ca m, re axed atmosphere
Take breaks ong sess on
Never act d sappo nted

ve tasks one at a t me
rst task shou d be easy, for an ear y success exper ence

Pr vacy
User s boss shou dn t be watch ng

Informat on
Answer quest ons aga n, where they won t b as

Contro
User can g ve up a task and go on to the next
User can qu t ent re

During the test, arrange the testing environment to make the user comfortable. Keep the atmosphere

calm, relaxed, and free of distractions. (We failed on all three counts at Prototype Testing Day!) If

the testing session is long, give the user bathroom, water, or coffee breaks, or just a chance to stand

up and stretch.

Don’t act disappointed when the user runs into difficulty, because the user will feel it as

disappointment in their performance, not in the user interface.

Don’t overwhelm the user with work. Give them only one task at a time. Ideally, the first task

should be an easy warmup task, to give the user an early success experience. That will bolster their

courage (and yours) to get them through the harder tasks that will discover more usability problems.

Answer the user’s questions as long as they don’t bias the test.

Keep the user in control. If they get tired of a task, let them give up on it and go on to another. If

they want to quit the test, pay them and let them go.

10

ll i l i

•
œ ‘ l

• i
œ i

i i i i

• i
œ ‘ li i i i i i
œ ‘ i i i ‘s

i i

Fa 2004 6.831 UI Des gn and Imp ementat on 11

After the Test

Comfort
Say what they ve he ped you do

Informat on
Answer quest ons that you had to defer to
avo d b as ng the exper ment

Pr vacy
Don t pub sh user- dent fy ng nformat on
Don t show v deo or aud o w thout user
perm ss on

After the test is over, thank the user for their help and tell them how they’ve helped. It’s easy to be

open with information at this point, so do so.

Later, if you disseminate data from the user test, don’t publish it in a way that allows users to be

individually identified. Certainly, avoid using their names.

If you collected video or audio records of the user test, don’t show them outside your development

group without explicit written permission from the user.

11

ll i l i

• Fi
œ l i

cl () l is

• Gi
œ l i i

l is

•

Fa 2004 6.831 UI Des gn and Imp ementat on 12

Form ative Evaluation

nd some users
Shou d be representat ve of the target user

ass es , based on user ana ys

ve each user some tasks
Shou d be representat ve of mportant
tasks, based on task ana ys

Watch user do the tasks

OK, we’ve seen some ethical rules that apply to running any kind of user test. Now let’s look in
particular at how to do formative evaluation.

You’ve already done one formative evaluation test already, using your paper prototypes. So you
know the basic steps already: (1) find some representative users; (2) give each user some
representative tasks; and (3) watch the user do the tasks.

12

ll i l i

•

• ili
•

Fa 2004 6.831 UI Des gn and Imp ementat on 13

Roles in Form ative Evaluation

User
Fac tator
Observers

There are three roles in a formative evaluation test: a user, a facilitator, and some observers.

13

ll i l i

e

• l i l
œ i i i
œ ‘ i
œ i

• l
œ l i
œ i i l l i
œ Di i

• i
œ i li l

lly
œ Al ll i i i i

Fa 2004 6.831 UI Des gn and Imp ementat on 14

User’s Rol

User shou d th nk a oud
What they th nk s happen ng
What they re try ng to do
Why they took an act on

Prob ems
Fee s we rd
Th nk ng a oud may a ter behav or

srupts concentrat on
Another approach: pa rs of users

Two users work ng together are more ke y to
converse natura

so ca ed co-d scovery, construct ve nteract on

The user’s primary role is to perform the tasks using the interface. While the user is actually doing
this, however, they should also be trying to think aloud: verbalizing what they’re thinking as they
use the interface. Encourage the user to say things like “OK, now I’m looking for the place to set the
font size, usually it’s on the toolbar, nope, hmm, maybe the Format menu…” Thinking aloud gives
you (the observer) a window into their thought processes, so you can understand what they’re trying
to do and what they expect.

Unfortunately, thinking aloud feels strange for most people. It can alter the user’s behavior, making
the user more deliberate and careful, and sometimes disrupting their concentration. Conversely,
when a task gets hard and the user gets absorbed in it, they may go mute, forgetting to think aloud.
One of the facilitator’s roles is to prod the user into thinking aloud.

One solution to the problems of think-aloud is constructive interaction, in which two users work on
the tasks together (using a single computer). Two users are more likely to converse naturally with
each other, explaining how they think it works and what they’re thinking about trying. Constructive
interaction requires twice as many users, however, and may be adversely affected by social dynamics
(e.g., a pushy user who hogs the keyboard). But it’s nearly as commonly used in industry as single-
user testing.

14

ll i l i

e

• i i
• i
• i l

i i
œ — i i “

œ — i “

• l i
i i

Fa 2004 6.831 UI Des gn and Imp ementat on 15

Facilitator’s Rol

Does the br ef ng
Prov des the tasks
Coaches the user to th nk a oud by
ask ng quest ons

What are you th nk ng?
Why d d you try that?

Contro s the sess on and prevents
nterrupt ons by observers

The facilitator (also called the experimenter) is the leader of the user test. The facilitator does the
briefing, gives tasks to the user, and generally serves as the voice of the development team
throughout the test. (Other developers may be observing the test, but should generally keep their
mouths shut.)

One of the facilitator’s key jobs is to coax the user to think aloud, usually by asking general
questions.

The facilitator may also move the session along. If the user is totally stuck on a task, the facilitator
may progressively provide more help, e.g. “Do you see anything that might help you?”, and then
“What do you think that button does?” Only do this if you’ve already recorded the usability
problem, and it seems unlikely that the user will get out of the tar pit themselves, and they need to get
unstuck in order to get on to another part of the task that you want to test. Keep in mind that once
you explain something, you lose the chance to find out what the user would have done by
themselves.

15

ll i l i

e

• i
œ ‘ l ‘ lai ‘ i i
œ Si if i l

•
œ iti l i i ly

i i
œ ll i
•
•
•

œ iti
• — l!“
• — “

Fa 2004 6.831 UI Des gn and Imp ementat on 16

Observer’s Rol

Be qu et!
Don t he p, don t exp n, don t po nt out m stakes

t on your hands t he ps
Take notes

Watch for cr ca nc dents: events that strong
affect task performance or sat sfact on
Usua y negat ve

Errors
Repeated attempts
Curses

May be pos ve
Coo
Oh, now I see.

While the user is thinking aloud, and the facilitator is coaching the think-aloud, any observers in the
room should be doing the opposite: keeping quiet. Don’t offer any help, don’t attempt to explain the
interface. Just sit on your hands, bite your tongue, and watch. You’re trying to get a glimpse of how
a typical user will interact with the interface. Since a typical user won’t have the system’s designer
sitting next to them, you have to minimize your effect on the situation. It may be very hard for you
to sit and watch someone struggle with a task, when the solution seems so obvious to you, but that’s
how you learn the usability problems in your interface.

Keep yourself busy by taking a lot of notes. What should you take notes about? As much as you can,
but focus particularly on critical incidents, which are moments that strongly affect usability, either
in task performance (efficiency or error rate) or in the user’s satisfaction. Most critical incidents are
negative. Pressing the wrong button is a critical incident. So is repeatedly trying the same feature to
accomplish a task. Users may draw attention to the critical incidents with their think-aloud, with
comments like “why did it do that?” or “@%!@#$!” Critical incidents can also be positive, of
course. You should note down these pleasant surprises too.

Critical incidents give you a list of potential usability problems that you should focus on in the next
round of iterative design.

16

ll i l i

•
œ lp

• i i
œ i l

• Vi i
œ ili l i ‘s

œ l i
œ l i i i i
œ
œ i i i i

i i iti l i i
• l i
œ i
œ i io

Fa 2004 6.831 UI Des gn and Imp ementat on 17

Recording Observations

Pen & paper notes
Prepared forms can he

Aud o record ng
For th nk-a oud

deo record ng
Usab ty abs often set up w th two cameras, one for user
face, one for screen
User may be se f-consc ous
Good for c osed-c rcu t v ew by observers n another room
Generates too much data
Retrospect ve test ng: go back through the v deo w th the
user, d scuss ng cr ca nc dents

Screen capture & event ogg ng
Cheap and unobtrus ve
Camtas a, CamStud

Here are various ways you can record observations from a user test. Paper notes are usually best,

although it may be hard to keep up. Having multiple observers taking notes helps.

Audio and video recording are good for capturing the user’s think-aloud, facial expressions, and

body language. Video is also helpful when you want to put observers in a separate room, watching

on a closed-circuit TV. Putting the observers in a separate room has some advantages: the user feels

fewer eyes on them (although the video camera is another eye that can make users more self-

conscious, since it’s making a permanent record), the observers can’t misbehave, and a big TV

screen means more observers can watch. On the other hand, when the observers are in a separate

room, they may not pay close attention to the test. It’s happened that as soon as the user finds a

usability problem, the observers start talking about how to fix that problem – and ignore the rest of

the test. Having observers in the same room as the test forces them to keep quiet and pay attention.

Video is also useful for retrospective testing – using the videotape to debrief the user immediately

after a test. It’s easy to fast forward through the tape, stop at critical incidents, and ask the user what

they were thinking, to make up for gaps in think-aloud.

The problem with audio and video tape is that it generates too much data to review afterwards. A

few pages of notes are much easier to scan and derive usability problems.

Screen capture software offers a cheap and easy way to record a user test, producing a digital movie

(e.g. AVI or MPG). It’s less obtrusive and easier to set up than a video camera, and some packages
can also record an audio stream to capture the user’s think-aloud.

17

ll i l i

• iel l
œ i i ili

l (i l)
œ i n ill fi

i ()n

œ ill fi l
• i i
œ i i l i

i i i
œ i i l i

i i i
• ltipl l

l

Fa 2004 6.831 UI Des gn and Imp ementat on 18

How M any Users?

Landauer-N sen mode
Every tested user f nds a fract on L of usab ty
prob ems typ ca L = 31%
If user tests are ndependent, then users w nd
a fract on 1­ 1-L
So 5 users w nd 85% of the prob ems

Wh ch s better:
Us ng 15 users to f nd 99% of prob ems w th one
des gn terat on
Us ng 5 users to f nd 85% prob ems w th each of
three des gn terat ons

For mu e user c asses, get 3-5 users from
each c ass

How many users do you need for formative evaluation? A simple model developed by Landauer and
Nielsen (“A Mathematical Model of the Finding of Usability Problems”, INTERCHI ’93) postulates
that every usability problem has a probability L of being found by a random user. So a single user
finds a fraction L of the usability problems. If user tests are independent (a reasonable assumption if
the users don’t watch or talk to each other), then n users will find a fraction 1-(1-L)n of the usability
problems.

Based on user tests and heuristic evaluations of 11 different interfaces, Landauer and Nielsen
estimated that L is typically 31% (the actual range was 12% to 60%). With L=31%, 5 users will find
about 85% of the problems.

For formative evaluation, more users is not always better. Rather than running 15 users to find
almost all likely usability problems with one design iteration, it’s wiser to run fewer users in each
iteration, in order to squeeze in more iterations.

18

ll i l i

• ll
œ l i

si l i
l

• l l
œ Di l i iliti

i
• ivi l di
• i i
• l i

• l ‘ i i
i

Fa 2004 6.831 UI Des gn and Imp ementat on 19

Flaw s in Nielsen-Landauer M odel

L may be much sma er than 31%
Spoo & Schroeder study of a CD-purchas ng web

te found L=8%, so 5 users on y f nd 35% of
prob ems

L may vary from prob em to prob em
fferent prob ems have d fferent probab es of

be ng found, caused by:
Ind dua fferences
Interface d vers ty
Task comp ex ty

Take-home esson: you can t pred ct w th
conf dence how many users may be needed

5 users is the magic number often seen in the usability literature. But L may be much smaller than
31%. A study of a website found L=8%, which means that 5 users would have found only a third of
the problems (Spool & Schroeder, “Testing web sites: five users is nowhere near enough”, CHI
2001). Interfaces with high diversity – different ways of doing a task – may tend to have low L
values.

The probability L of finding a problem may also vary from problem to problem (and user to user).
And there’s no way to compute L in advance. All published values for L have been computed after
the fact. There’s no model for determining L for a particular interface, task, or user.

19

