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Problem 1 

A pressure wave, Pi , incident on an arterial (or bronchial) bifurcation will suffer a reflection, Pr , 
of magnitude 

Pr ZL − Zo
≡ � = 

Pi ZL + Zo 

where Zo is the upstream arterial impedance, and ZL is the impedance of the bifurcation. The 
impedance, Z , of a vessel of radius R may be calculated from the formulæderived in the notes: 

Z 2 ρ	 2π R3 

=	 Cu ≈ 
ACu	 h E 

where ρ is the fluid density, A is the vessel cross-section, h is the vessel wall thickness, and E is 
the vessel modulus of elasticity. 

Figure 1: 
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total cross-sectional area across the bifurcation, calculate the reflection coefficient.


B.	 Suppose the vessels distal to the bifurcation are severely calcified, so that E1 � E0. What 
will the reflection coeffecient be? Does this suggest a noninvasive method of detecting the 
presence of severe arterial disease? 
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Problem 2 

This problem deals with the estimation of the pressure drop to be expected across a vascular steno­
sis. Figure 2 is a sketch of the cross-section of a stenotic artery with a concentric plaque. An 
idealized model is shown in Figure 3, demonstrating a narrowed region followed by a sudden ex­
pansion where the fluid will generally exhibit turbulent flow. Energy will be lost in two ways: in 
viscous flow in the narrow region and in turbulent loss in the expansion. In this problem we will 
concentrate on the latter. 

Figure 2: 

Figure 3: 

1 2 3 

u3, A3, P3u2, A2, P2u1, A1, P1 

The first task will be to estimate the pressure drop from point 2 to point 3. Position 3 is chosen 
far enough downstream to be in a region of uniform flow, of velocity u3. In order to solve this 
problem we must make use of the “linear momentum theorem”. 

Consider a flow field of fluid with a superimposed control volume (CV). Newton’s second law 
for the system included within the CV is 

d � �M 
= Fsystem (1) 

dt 
This equation states that the rate of change of the system momentum equals the sum of forces 

acting on the mass inside the control volume. Equation 1 may be written as: 

d 
ρU�dV + ρU� U� · n� d A = F� (2) 

dt VCV ACV 
The first term is the rate of accumulation of momentum within the control volume; the second 

term is the net rate of momentum flux out of the CV. 
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Let us establish a CV for our model of the sudden expansion in Figure 3. (The volume within 
the dashed line in Figure 4.) 

Figure 4: 
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The fluid is incompressible, and there is no net acceleration of the mass within the CV, so the 
first term of Equation 2 disappears. How do we evaluate the second term? 

A.	 Calculate the momentum flux into the CV. (Note that flux is the rate of momentum passing 
into the CV per unit time.) Do you agree that the answer is: 

ρu2(u2 A2) = 2ρ A2u2 

B.	 What is the momentum flux out of the CV at point 3? 

C.	 Use conservation of mass to relate u3 to u2 and the cross-sectional areas A2 and A3. 

D.	 Next we need to calculate the right hand side of equation 2. The forces acting on the CV 
are pressure forces. Assume that the pressure at the entrance orifice, P2, is equal across the 
entire face of the CV at position 2. What is the net force acting on the CV? 

E.	 What is the pressure drop P2 − P3 as a function of the velocity u2, the areas A2 and A3, and 
the fluid density? 

F.	 Now let us focus on the entrance portion of the stenosis shown below, and consider inviscid 
flow (Figure 5). 

Figure 5: 
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Use the Bernoulli principle and conservation of mass to relate the pressure drop P1 − P2 to 
the characteristics of the fluid, the entrance velocity (u1), and the geometry. 
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G.	 If we neglect viscous losses in the region of the stenosis, what will be the total pressure drop 
P1 − P3? Your derivation should end up with the following: 

1	 2 
� 

A1 
�2 

P1 − P3 = ρu1 − 1 
2 A2 

H.	 In a vessel where u1 is 30 cm/sec, and the ratio A2/A1 is 0.1, estimate the pressure drop in 
mmHg. (Remember that 1 mmHg=1330 dynes/cm2.) What pressure drop would be expected 
if the lumen diameter is reduced to 25% of its original size? 

2004/234 

6.022j—2004: Problem Set 6 5 



Problem 3 

Engineers for a medical products company have developed an inexpensive, hand-held device for 
monitoring peak expiratory flow rates in asthmatics. The device, shown in Figure 6, consists of 
a rigid cylinder with a long, narrow slit down the side and a close-fitting, spring-loaded piston 
diaphragm. Expired air enters the chamber of the peak flow meter from the left through the mouth­
piece, then exits via the slit at a uniform velocity. The length of the slit available for flow, x , is 
equal to the displacement of the piston. Gas exits from the slit in the form of a turbulent jet into 
the atmosphere at pressure pa . 

Assuming the flow to be quasi-steady and inviscid, that the piston moves without friction, and 
that the displacement is linearly proportional to the force F acting on it: 

F = k x 

answer the following questions. You may take the following as given: 

• density of expired air, ρ 

• atmospheric pressure, pa 

• slit height, h (h � D) 

• volume flow rate, Q 

• spring constant, k 

• piston diameter, D 

• exposed slit length, x 

A.	 Given the volume flow rate entering the device, Q, and assuming the piston to be displaced 
a distance x but non-accelerating, what is the velocity of gas exiting through the slit? 

B.	 What is the pressure inside the chamber of the flowmeter, po? 

C.	 What is the relationship between the displacement of the piston, x , and the other given 
parameters? 

Figure 6: 
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Problem 4 

You are conducting experiments in your laboratory on a new artificial lung which consists of two 
parallel membranes separated by a small distance d. (See Figure 7.) Blood flows through the gap 
under steady laminar conditions due to a pressure gradient, −d p/dx , and oxygen transport occurs 
across the membranes. Assume blood to be a Newtonian fluid of viscosity µ. 

Figure 7: 
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A.	 Using the coordinate system shown in Figure 7, what are the boundary conditions on the 

fluid velocity vx (y) and the shear rate γ̇ = 
∂vx (y)

? 
∂y 

B.	 Set up the differential equation of motion for the control volume dx dy dz. 

C.	 Solve the equation (subject to the boundary conditions) for the blood velocity in the x -direction 
as a function of y. Sketch the result. 

D.	 Using the result of (C), determine the flow rate per unit width, Q/dz, in terms of the pressure 
gradient −d p/dx , the gap width d, and the blood viscosity µ. 

E.	 What is the resistance, R, per unit width of the structure? 

F.	 What is the shear rate at the membrane surface in terms of the average flow velocity, V̄ ? 
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