
OS Bugs
Required reading: Bugs as deviant behavior

Overview
Operating systems must obey many rules for correctness and performance. Examples
rules:

• Do not call blocking functions with interrupts disabled or spin lock held
• check for NULL results
• Do not allocate large stack variables
• Do no re-use already-allocated memory
• Check user pointers before using them in kernel mode
• Release acquired locks

In addition, there are standard software engineering rules, like use function results in
consistent ways.

These rules are typically not checked by a compiler, even though they could be checked
by a compiler, in principle. The goal of the meta-level compilation project is to allow
system implementors to write system-specific compiler extensions that check the source
code for rule violations.

The results are good: many new bugs found (500-1000) in Linux alone. The paper for
today studies these bugs and attempts to draw lessons from these bugs.

Are kernel error worse than user-level errors? That is, if we get the kernel correct, then
we won't have system crashes?

Errors in JOS kernel
What are unstated invariants in the JOS?

• Interrupts are disabled in kernel mode
• Only env 1 has access to disk
• All registers are saved & restored on context switch
• Application code is never executed with CPL 0
• Don't allocate an already-allocated physical page
• Propagate error messages to user applications (e.g., out of resources)
• Map pipe before fd
• Unmap fd before pipe
• A spawned program should have open only file descriptors 0, 1, and 2.

• Pass sometimes size in bytes and sometimes in block number to a given file
system function.

• User pointers should be run through TRUP before used by the kernel

Could these errors have been caught by metacompilation? Would metacompilation have
caught the pipe race condition? (Probably not, it happens in only one place.)

How confident are you that your code is correct? For example, are you sure interrupts are
always disabled in kernel mode? How would you test?

Metacompilation
A system programmer writes the rule checkers in a high-level, state-machine language
(metal). These checkers are dynamically linked into an extensible version of g++, xg++.
Xg++ applies the rule checkers to every possible execution path of a function that is
being compiled.

An example rule from the OSDI paper:

sm check_interrupts {
 decl { unsigned} flags;
 pat enable = { sti(); } | {restore_flags(flags);} ;
 pat disable = { cli(); };

 is_enabled: disable ==> is_disabled | enable ==> { err("double
 enable")};
 ...
A more complete version found 82 errors in the Linux 2.3.99 kernel.

Common mistake:

get_free_buffer (...) {

 save_flags (flags);
 cli ();
 if ((bh = sh->buffer_pool) == NULL)
 return NULL;

}

(Figure 2 also lists a simple metarule.)

Some checkers produce false positives, because of limitations of both static analysis and
the checkers, which mostly use local analysis.

How does the block checker work? The first pass is a rule that marks functions as
potentially blocking. After processing a function, the checker emits the function's flow
graph to a file (including, annotations and functions called). The second pass takes the
merged flow graph of all function calls, and produces a file with all functions that have a

http://www.stanford.edu/%7Eengler/exe-ccs-06.pdf

path in the control-flow-graph to a blocking function call. For the Linux kernel this
results in 3,000 functions that potentially could call sleep. Yet another checker like
check_interrupts checks if a function calls any of the 3,000 functions with interrupts
disabled. Etc.

This paper
Writing rules is painful. First, you have to write them. Second, how do you decide what
to check? Was it easy to enumerate all conventions for JOS?

Insight: infer programmer "beliefs" from code and cross-check for contradictions. If cli is
always followed by sti, except in one case, perhaps something is wrong. This simplifies
life because we can write generic checkers instead of checkers that specifically check for
sti, and perhaps we get lucky and find other temporal ordering conventions.

Do we know which case is wrong? The 999 times or the 1 time that sti is absent? (No,
this method cannot figure what the correct sequence is but it can flag that something is
weird, which in practice useful.) The method just detects inconsistencies.

Is every inconsistency an error? No, some inconsistency don't indicate an error. If a call
to function f is often followed by call to function g, does that imply that f should always
be followed by g? (No!)

Solution: MUST beliefs and MAYBE beliefs. MUST beliefs are invariants that must
hold; any inconsistency indicates an error. If a pointer is dereferences, then the
programmer MUST believe that the pointer is pointing to something that can be
dereferenced (i.e., the pointer is definitely not zero). MUST beliefs can be checked using
"internal inconsistencies".

An aside, can zero pointers pointers be detected during runtime? (Sure, unmap the page at
address zero.) Why is metacompilation still valuable? (At runtime you will find only the
null pointers that your test code dereferenced; not all possible dereferences of null
pointers.) An even more convincing example for Metacompilation is tracking user
pointers that the kernel dereferences. (Is this a MUST belief?)

MAYBE beliefs are invariants that are suggested by the code, but they maybe
coincidences. MAYBE beliefs are ranked by statistical analysis, and perhaps augmented
with input about functions names (e.g., alloc and free are important). Is it
computationally feasible to check every MAYBE belief? Could there be much noise?

What errors won't this approach catch?

Paper discussion

This paper is best discussed by studying every code fragment. Most code fragments are
pieces of code from Linux distributions; these mistakes are real!

Section 3.1. what is the error? how does metacompilation catch it?

Figure 1. what is the error? is there one?

Code fragments from 6.1. what is the error? how does metacompilation catch it?

Figure 3. what is the error? how does metacompilation catch it?

Section 8.3. what is the error? how does metacompilation catch it?

	OS Bugs
	Overview
	Errors in JOS kernel
	Metacompilation
	This paper
	Paper discussion

