
Why am I lecturing about Multics?
 Origin of many ideas in today's OSes
 Motivated UNIX design (often in opposition)
 Motivated x86 VM design
 This lecture is really "how Intel intended x86 segments to be used"

Multics background
 design started in 1965
 very few interactive time-shared systems then: CTSS
 design first, then implementation
 system stable by 1969
 so pre-dates UNIX, which started in 1969
 ambitious, many years, many programmers, MIT+GE+BTL

Multics high-level goals
 many users on same machine: "time sharing"
 perhaps commercial services sharing the machine too
 remote terminal access (but no recognizable data networks: wired or phone)
 persistent reliable file system
 encourage interaction between users
 support joint projects that share data &c
 control access to data that should not be shared

Most interesting aspect of design: memory system
 idea: eliminate memory / file distinction
 file i/o uses LD / ST instructions
 no difference between memory and disk files
 just jump to start of file to run program
 enhances sharing: no more copying files to private memory
 this seems like a really neat simplification!

GE 645 physical memory system
 24-bit phys addresses
 36-bit words
 so up to 75 megabytes of physical memory!!!
 but no-one could afford more than about a megabyte

[per-process state]
 DBR
 DS, SDW (== address space)
 KST
 stack segment
 per-segment linkage segments

[global state]
 segment content pages
 per-segment page tables
 per-segment branch in directory segment
 AST

645 segments (simplified for now, no paging or rings)
 descriptor base register (DBR) holds phy addr of descriptor segment (DS)
 DS is an array of segment descriptor words (SDW)
 SDW: phys addr, length, r/w/x, present
 CPU has pairs of registers: 18 bit offset, 18 bit segment #
 five pairs (PC, arguments, base, linkage, stack)
 early Multics limited each segment to 2^16 words

 thus there are lots of them, intended to correspond to program modules
 note: cannot directly address phys mem (18 vs 24)
 645 segments are a lot like the x86!

645 paging
 DBR and SDW actually contain phy addr of 64-entry page table
 each page is 1024 words
 PTE holds phys addr and present flag
 no permission bits, so you really need to use the segments, not like JOS
 no per-process page table, only per-segment
 so all processes using a segment share its page table and phys storage
 makes sense assuming segments tend to be shared
 paging environment doesn't change on process switch

Multics processes
 each process has its own DS
 Multics switches DBR on context switch
 different processes typically have different number for same segment

how to use segments to unify memory and file system?
 don't want to have to use 18-bit seg numbers as file names
 we want to write programs using symbolic names
 names should be hierarchical (for users)
 so users can have directories and sub-directories
 and path names

Multics file system
 tree structure, directories and files
 each file and directory is a segment
 dir seg holds array of "branches"
 name, length, ACL, array of block #s, "active"
 unique ROOT directory
 path names: ROOT > A > B
 note there are no inodes, thus no i-numbers
 so "real name" for a file is the complete path name
 o/s tables have path name where unix would have i-number
 presumably makes renaming and removing active files awkward
 no hard links

how does a program refer to a different segment?
 inter-segment variables contain symbolic segment name
 A$E refers to segment A, variable/function E
 what happens when segment B calls function A$E(1, 2, 3)?

when compiling B:
 compiler actually generates *two* segments
 one holds B's instructions
 one holds B's linkage information
 initial linkage entry:
 name of segment e.g. "A"
 name of symbol e.g. "E"
 valid flag
 CALL instruction is indirect through entry i of linkage segment
 compiler marks entry i invalid
 [storage for strings "A" and "E" really in segment B, not linkage seg]

when a process is executing B:

 two segments in DS: B and a *copy* of B's linkage segment
 CPU linkage register always points to current segment's linkage segment
 call A$E is really call indirect via linkage[i]
 faults because linkage[i] is invalid
 o/s fault handler
 looks up segment name for i ("A")
 search path in file system for segment "A" (cwd, library dirs)
 if not already in use by some process (branch active flag and AST
knows):
 allocate page table and pages
 read segment A into memory
 if not already in use by *this* process (KST knows):
 find free SDW j in process DS, make it refer to A's page table
 set up r/w/x based on process's user and file ACL
 also set up copy of A's linkage segment
 search A's symbol table for "E"
 linkage[i] := j / address(E)
 restart B
 now the CALL works via linkage[i]
 and subsequent calls are fast

how does A get the correct linkage register?
 the right value cannot be embedded in A, since shared among processes
 so CALL actually goes to instructions in A's linkage segment
 load current seg# into linkage register, jump into A
 one set of these per procedure in A

all memory / file references work this way
 as if pointers were really symbolic names
 segment # is really a transparent optimization
 linking is "dynamic"
 programs contain symbolic references
 resolved only as needed -- if/when executed
 code is shared among processes
 was program data shared?
 probably most variables not shared (on stack, in private segments)
 maybe a DB would share a data segment, w/ synchronization
 file data:
 probably one at a time (locks) for read/write
 read-only is easy to share

filesystem / segment implications
 programs start slowly due to dynamic linking
 creat(), unlink(), &c are outside of this model
 store beyond end extends a segment (== appends to a file)
 no need for buffer cache! no need to copy into user space!
 but no buffer cache => ad-hoc caches e.g. active segment table
 when are dirty segments written back to disk?
 only in page eviction algorithm, when free pages are low
 database careful ordered writes? e.g. log before data blocks?
 I don't know, probably separate flush system calls

how does shell work?
 you type a program name
 the shell just CALLs that program, as a segment!
 dynamic linking finds program segment and any library segments it needs
 the program eventually returns, e.g. with RET

 all this happened inside the shell process's address space
 no fork, no exec
 buggy program can crash the shell! e.g. scribble on stack
 process creation was too slow to give each program its own process

how valuable is the sharing provided by segment machinery?
 is it critical to users sharing information?
 or is it just there to save memory and copying?

how does the kernel fit into all this?
 kernel is a bunch of code modules in segments (in file system)
 a process dynamically loads in the kernel segments that it uses
 so kernel segments have different numbers in different processes
 a little different from separate kernel "program" in JOS or xv6
 kernel shares process's segment# address space
 thus easy to interpret seg #s in system call arguments
 kernel segment ACLs in file system restrict write
 so mapped non-writeable into processes

how to call the kernel?
 very similar to the Intel x86
 8 rings. users at 4. core kernel at 0.
 CPU knows current execution level
 SDW has max read/write/execute levels
 call gate: lowers ring level, but only at designated entry
 stack per ring, incoming call switches stacks
 inner ring can always read arguments, write results
 problem: checking validity of arguments to system calls
 don't want user to trick kernel into reading/writing the wrong segment
 you have this problem in JOS too
 later Multics CPUs had hardware to check argument references

are Multics rings a general-purpose protected subsystem facility?
 example: protected game implementation
 protected so that users cannot cheat
 put game's code and data in ring 3
 BUT what if I don't trust the author?
 or if i've already put some other subsystem in ring 3?
 a ring has full power over itself and outer rings: you must trust
 today: user/kernel, server processes and IPC
 pro: protection among mutually suspicious subsystems
 con: no convenient sharing of address spaces

UNIX vs Multics
 UNIX was less ambitious (e.g. no unified mem/FS)
 UNIX hardware was small
 just a few programmers, all in the same room
 evolved rather than pre-planned
 quickly self-hosted, so they got experience earlier

What did UNIX inherit from MULTICS?
 a shell at user level (not built into kernel)
 a single hierarchical file system, with subdirectories
 controlled sharing of files
 written in high level language, self-hosted development

What did UNIX reject from MULTICS?

 files look like memory
 instead, unifying idea is file descriptor and read()/write()
 memory is a totally separate resource
 dynamic linking
 instead, static linking at compile time, every binary had copy of
libraries
 segments and sharing
 instead, single linear address space per process, like xv6
 (but shared libraries brought these back, just for efficiency, in 1980s)
 Hierarchical rings of protection
 simpler user/kernel
 for subsystems, setuid, then client/server and IPC

The most useful sources I found for late-1960s Multics VM:
 1. Bensoussan, Clingen, Daley, "The Multics Virtual Memory: Concepts
 and Design," CACM 1972 (segments, paging, naming segments, dynamic
 linking).
 2. Daley and Dennis, "Virtual Memory, Processes, and Sharing in Multics,"
 SOSP 1967 (more details about dynamic linking and CPU).
 3. Graham, "Protection in an Information Processing Utility,"
 CACM 1968 (brief account of rings and gates).

