
6.828 Fall 2006 Lab 3: User Environments 
Handed out Wednesday, September 27, 2006 
Part A due Thursday, October 5, 2006 
Part B due Thursday, October 12, 2006 

Introduction 
In this lab you will implement the basic kernel facilities required to get a protected user-
mode environment (i.e., "process") running. You will enhance the JOS kernel to set up 
the data structures to keep track of user environments, create a single user environment, 
load a program image into it, and start it running. You will also make the JOS kernel 
capable of handling any system calls the user environment makes and handling any other 
exceptions it causes.  

Note: In this lab, the terms environment and process are interchangeable - they have 
roughly the same meaning. We introduce the term "environment" instead of the 
traditional term "process" in order to stress the point that JOS environments do not 
provide the same semantics as UNIX processes, even though they are roughly 
comparable.  

Getting Started 

Download our reference code for lab 3 (lab3-handout.gz) from the labs section of this course,
untar it into your 6.828 directory, and merge the changes between lab2 and lab3 into your 

diff

 and patch utilities can be very useful for this purpose, as well as their "big brother" cvs.  

Lab 3 contains a number of new source files, which you should browse through as your 
merge them into your kernel:  

inc/  env.h  Public definitions for user-mode environments  
 trap.h  Public definitions for trap handling  

 syscall.h  Public definitions for system calls from user environments to the 
kernel  

 lib.h  Public definitions for the user-mode support library  
kern/ env.h  Kernel-private definitions for user-mode environments  
 env.c  Kernel code implementing user-mode environments  
 trap.h  Kernel-private trap handling definitions  
 trap.c  Trap handling code  
 trapentry.S Assembly-language trap handler entry-points  

working kernel source tree as you did before for lab2. As we mentioned before, the 



 syscall.h  Kernel-private definitions for system call handling  
 syscall.c  System call implementation code  
lib/  Makefrag  Makefile fragment to build user-mode library, obj/lib/libuser.a 
 entry.S  Assembly-language entry-point for user environments  
 libmain.c  User-mode library setup code called from entry.S  
 syscall.c  User-mode system call stub functions  

 console.c  User-mode implementations of putchar and getchar, providing 
console I/O  

 exit.c  User-mode implementation of exit  
 panic.c  User-mode implementation of panic  
user/ *  Various test programs to check kernel lab 3 code  

In addition, a number of the source files we handed out for lab2 are modified in lab3. To 
see the differences, you can type:  

$ diff -ur lab2 lab3 

Lab Requirements 

This lab is divided into two parts, A and B. Part A is due after the first week of the lab 
period; you should just gmake handin your lab before the Part A deadline, even though 
your code may not yet pass all of the grade script tests. (If it does, great!) You only need 
to have all the grade script tests passing by the Part B deadline at the end of the second 
week.  

As in lab 2, you will need to do all of the regular exercises described in the lab and at 
least one challenge problem. Additionally, you will need to write up brief answers to the 
questions posed in the lab and a short (e.g., one or two paragraph) description of what 
you did to solve your chosen challenge problem. If you implement more than one 
challenge problem, you only need to describe one of them in the write-up, though of 
course you are welcome to do more. Place the write-up in a file called answers.txt 
(plain text) or answers.html (HTML format) in the top level of your lab2 directory 
before handing in your work.  

Debugging tips 

For all its faults, Bochs is still a much more hospitable debugging environment than a real 
processor. Put it to work for you!  

• The command info idt will print the current interrupt descriptor table (IDT). 
This is useful for checking whether you set it up correctly.  

• The vb command sets a breakpoint at a particular CS:EIP address. Since the 
kernel code segment selector is 8, vb 8:0xf0101234 sets a breakpoint at the 



given kernel address. Similarly, since the user segment selector is 0x1b, vb 
0x1b:0x80020 sets a breakpoint at the given user address.  

Finally, note that passing all the gmake grade tests does not mean your code is perfect. It 
may have subtle bugs that will only be tickled by future labs. In a perfect world, gmake 
grade would find all your bugs, but no one builds operating systems in a perfect world 
anyway. Keep in mind that debugging an operating system is a very holistic task -- there 
are abstraction boundaries, but you can't necessarily place much trust in them since 
nothing is really enforcing them. If you get all sorts of weird crashes that don't seem to be 
explainable by a single bug in the layer you're working on, it's likely that they're 
explainable by a single bug in a different layer.  

Inline Assembly 

In this section you may find GCC's inline assembly language feature useful, although it is 
also possible to complete the lab without using it. At the very least, you will need to be 
able to understand the fragments of inline assembly language ("asm" statements) that 
already exist in the source code we gave you. For the "definitive" reference to GCC inline 
assembly language, type info gcc, select the "C Extensions" chapter, and then the 
"Extended Asm" section. You can find several other sources of information on GCC 
inline assembly language on the class reference materials (syllabus section) page.  

Hand-In Procedure 

As before, you can test your code against our test scripts by running gmake grade. When 
you are done, run gmake handin to tar up and hand in your source tree.  

Part A: User Environments and Exception Handling 
The new include file inc/env.h contains basic definitions for user environments in JOS; 
you should familiarize yourself with it right away. The kernel uses the Env data structure 
to keep track of critical data pertaining to each user environment. In this lab you will 
initially create just one environment, but you will need to design the JOS kernel to 
support multiple environments; lab 4 will take advantage of this feature by allowing a 
user environment to fork other environments.  

As you can see in kern/env.c, the kernel maintains three main global variables 
pertaining to environments:  

struct Env *envs = NULL;  /* All environments */ 
struct Env *curenv = NULL;         /* the current env */ 
static struct Env_list env_free_list; /* Free list */ 

Once JOS gets up and running, the envs pointer points to an array of Env structures 
representing all the environments in the system. In our design, the JOS kernel will 
support a maximum of NENV simultaneously active environments, although there will 



typically be far fewer running environments at any given time. (NENV is a constant 
#define'd in inc/env.h.) Once it is allocated, the envs array will contain a single 
instance of the Env data structure for each of the NENV possible environments.  

The JOS kernel keeps all of the inactive Env structures on the env_free_list. This 
design allows extremely quick and efficient allocation and deallocation of environments, 
as they merely have to be added to or removed from the free list.  

The kernel uses the curenv variable to keep track of the currently executing environment 
at any given time. During boot up, before the first environment is run, curenv is initially 
set to NULL.  

Environment State 

The Env structure is defined in inc/env.h as follows (although more fields will be added 
in future labs):  
struct Env { 
        struct Trapframe env_tf;        // Saved registers 
        LIST_ENTRY(Env) env_link;       // Free list link pointers 
        u_int env_id;                   // Unique environment 
identifier 
        u_int env_parent_id;            // env_id of this env's parent 
        u_int env_status;               // Status of the environment 
                                                                                 
        // Address space 
        Pde  *env_pgdir;                // Kernel virtual address of 
page dir 
        u_int env_cr3;                  // Physical address of page dir 
}; 

We now briefly describe the state kept by the kernel for each user environment.  

env_tf:  
This structure, defined in inc/trap.h, holds the saved register values for the 
environment while that environment is not running: i.e., when the kernel or a 
different environment is running. The kernel saves these when switching from 
user to kernel mode for any reason, so that the environment can later be resumed 
where it left off.  

env_link:  
This is a pair of pointers allowing the Env to be placed on the env_free_list. 
See inc/queue.h for details.  

env_id:  
The kernel stores here a value that uniquely identifiers the environment currently 
using this Env structure (i.e., using this particular slot in the envs array). After a 
user environment terminates, the kernel may subsequently re-allocate the same 
Env structure to a different environment - but in this case the new environment 
will still have a different env_id from the old one even though the new 
environment is re-using the same slot in the envs array.  



env_parent_id:  
The kernel stores here the env_id of the environment that created this 
environment. In this way the environments can form a ``family tree,'' which will 
be useful for making security decisions about which environments are allowed to 
do what to whom.  

env_status:  
This variable holds one of the following values:  
ENV_FREE:  
Indicates that the Env structure is inactive, and therefore on the env_free_list.  
ENV_RUNNABLE:  
Indicates that the Env structure represents a currently active environment, and the 
environment is waiting to run on the processor.  
ENV_NOT_RUNNABLE:  
Indicates that the Env structure represents a currently active environment, but it is 
not currently ready to run: for example, because it is waiting for an interprocess 
communication (IPC) from another environment.  

env_pgdir:  
This variable holds a virtual address pointer to this environment's page directory.  

env_cr3:  
This variable holds the corresponding physical address for this environment's 
page directory.  

Like a Unix process, a JOS environment couples the concepts of "thread" and "address 
space". The thread is defined primarily by the saved registers (the env_tf field), and the 
address space is defined by the page directory and page tables pointed to by env_pgdir 
and env_cr3. To run an environment, the kernel must set up the CPU with both the saved 
registers and the appropriate address space.  

Our struct Env is analogous to struct proc in xv6. Both structures hold the 
environment's (i.e., process's) user-mode register state directly within the env_tf 
substructure (dubbed simply tf in the case of xv6). In JOS, individual environments do 
not have their own kernel stacks as processes do in xv6. Instead, all JOS kernel code runs 
on a single kernel stack.  

Allocating the Environments Array 

In lab 2, you allocated memory in i386_vm_init() for the pages[] array, which is a 
table the kernel uses to keep track of which pages are free and which are not. You will 
now need to modify i386_vm_init() further to allocate a similar array of Env structures, 
called envs.  

Exercise 1. Modify i386_vm_init() in kern/pmap.c to allocate and 
map the envs array. This array consists of exactly NENV instances of the 
Env structure, laid out consecutively in the kernel's virtual address 
space starting at address UENVS (defined in inc/memlayout.h). The 



physical pages that these virtual addresses map to do not have to be 
contiguous, since the kernel only ever uses virtual addresses to access 
the envs array. You should be able to allocate and map this array in 
exactly the same way as you did for the pages array.  

Creating and Running Environments 

You will now write the code in kern/env.c necessary to run a user environment. 
Because we do not yet have a filesystem, we will set up the kernel to load a static binary 
image that is embedded within the kernel itself, much like xv6 does with load_icode on 
line 1356. As does xv6, JOS embeds these binaries in the kernel as real ELF executable 
images. By contrast, the Unix V6 OS studied in 6.828 in previous years used short hand-
assembled code fragments.  

The Lab 3 GNUmakefile generates a number of binary images in the obj/user/ 
directory. If you look at kern/Makefrag, you will notice some magic that "links" these 
binaries directly into the kernel executable as if they were .o files. The -b binary option 
on the linker command line causes these files to be linked in as "raw" uninterpreted 
binary files rather than as regular .o files produced by the compiler. (As far as the linker 
is concerned, these files do not have to be ELF images at all - they could be anything, 
such as text files or pictures!) If you look at obj/kern/kernel.sym after building the 
kernel, you will notice that the linker has "magically" produced a number of funny 
symbols with obscure names like _binary_obj_user_hello_start, 
_binary_obj_user_hello_end, and _binary_obj_user_hello_size. The linker 
generates these symbol names by mangling the file names of the binary files; the symbols 
provide the regular kernel code with a way to reference the embedded binary files.  

In i386_init() in kern/init.c you'll see code to run one of these binary images in an 
environment. However, the critical functions to set up user environments are not 
complete; you will need to fill them in.  

Exercise 2. In the file env.c, finish coding the following functions:  
env_init():  

initialize all of the Env structures in the envs array and add 
them to the env_free_list.  

env_setup_vm():  
allocate a page directory for a new environment and initialize 
the kernel portion of the new environment's address space.  

segment_alloc():  
allocates and maps physical memory for an environment  

load_icode():  
you will need to parse an ELF binary image, much like the boot 
loader already does, and load its contents into the user address 
space of a new environment.  

env_create():  



allocate an environment with env_alloc and call load_icode 
load an ELF binary into it.  

env_run():  
start a given environment running in user mode.  

As you write these functions, you might find the new cprintf verb %e 
useful -- it prints a description corresponding to an error code. For 
example,  

 r = -E_NO_MEM; 
 panic("env_alloc: %e", r); 
  
will panic with the message "env_alloc: out of memory".  

Once you are done you should compile your kernel and run it under Bochs. If all goes 
well, your system should crash in the user program while it is trying to make a system 
call, since you haven't implemented system calls yet; you should examine what happened 
as explained below. Below is a call graph of the code up to the point where the user code 
is invoked. Make sure you understand the purpose of each step.  

• start (kern/entry.S)  
• i386_init  

o cons_init  
o i386_detect_memory  
o i386_vm_init  
o page_init  
o env_init  
o idt_init (still incomplete at this point)  
o env_create  
o env_run  

 env_pop_tf  

Set a Bochs breakpoint at env_pop_tf, which should be the last function you hit before 
actually entering user mode. Step through this function; the processor should enter user 
mode after the iret instruction. You should then see the first instruction in the user 
environment's executable, which is the cmpl instruction at the label start in 
lib/entry.S. You should be able to single-step through this user mode environment 
code until you first hit an int $0x30 instruction, which is the instruction that user-mode 
code executes to make a system call. Unless you've changed the code in i386_init, the 
first system call you'll hit is sys_cputs, which is called by cprintf to put characters to 
the console. (See lib/syscall.c for more details.) If you cannot get to this point, then 
something is wrong with your address space setup or program loading code; go back and 
fix it before continuing.  

Handling Interrupts and Exceptions 



At this point, the first int $0x30 system call instruction in user space is a dead end: once 
the processor gets into user mode, there is no way to get back out. You will now need to 
implement basic exception and system call handling, so that it is possible for the kernel to 
recover control of the processor from user-mode code. The first thing you should do is 
thoroughly familiarize yourself with the x86 interrupt and exception mechanism.  

Exercise 3. Read Chapter 9, Exceptions and Interrupts in the 80386 
Programmer's Manual (or Chapter 5 of the IA-32 Developer's Manual)  
(see readings), if you haven't already.  

In this lab we generally follow Intel's terminology for interrupts, exceptions, and the like. 
However, be aware that terms such as exceptions, traps, interrupts, faults and aborts have 
no standardized meaning across architectures or operating systems, and often used rather 
loosely without close regard to the subtle distinctions between them on a particular 
architecture such as the x86. When you see these terms outside of this lab, the meanings 
might be slightly different.  

Basics of Protected Control Transfer 

Exceptions and interrupts are both "protected control transfers," which cause the 
processor to switch from user to kernel mode without giving the user-mode code any 
opportunity to interfere with the functioning of the kernel or other environments. In 
Intel's terminology, an interrupt is a protected control transfer that is caused by an 
asynchronous event usually external to the processor, such as notification of external 
device I/O activity. An exception, in contrast, is a protected control transfer caused 
synchronously by the currently running code, for example due to a divide by zero or an 
invalid memory access.  

In order to ensure that these protected control transfers are actually protected, the 
processor's interrupt/exception mechanism is designed so that the code currently running 
when the interrupt or exception occurs does not get to choose arbitrarily where the kernel 
is entered or how. Instead, the processor ensures that the kernel can be entered only under 
carefully controlled conditions. On the x86, this protection is provided on the basis of two 
particular mechanisms:  

1. The Interrupt Descriptor Table. The processor ensures that interrupts and 
exceptions can only cause the kernel to be entered at a few specific, well-defined 
entry-points determined by the kernel itself, and not by the code currently running 
when the interrupt or exception is taken.  

In particular, x86 interrupts and exceptions are differentiated into up to 256 
possible "types", each associated with a particular interrupt number (often 
referred to synonymously as an exception number or trap number). Once the 
processor identifies a particular interrupt or exception to be taken, it uses the 
interrupt number as an index into the processor's interrupt descriptor table (IDT), 
which is a special table that the kernel sets up in kernel-private memory, much 
like the GDT. From the appropriate entry in this table the processor loads:  



o the value to load into the instruction pointer (EIP) register, pointing to the 
kernel code designated to handle that type of exception.  

o the value to load into the code segment (CS) register, which includes in 
bits 0-1 the privilege level at which the exception handler is to run. (In 
JOS, all exceptions are handled in kernel mode, or privilege level 0.)  

2. The Task State Segment. In addition to having a well-defined entry-point in the 
kernel for an interrupt or exception handler, the processor also needs a place to 
save the old processor state before the interrupt or exception occurred, such as the 
original values of EIP and CS before the processor invoked the exception handler, 
so that the exception handler can later restore that old state and resume the 
interrupted code from where it left off. But this save area for the old processor 
state must in turn be protected from unprivileged user-mode code; otherwise 
buggy or malicious user code could easily compromise the kernel.  

For this reason, when an x86 processor takes an interrupt or trap that causes a 
privilege level change from user to kernel mode, it not only loads new values into 
EIP and CS, but also loads new values into the stack pointer (ESP) and stack 
segment (SS) registers, effectively switching to a new stack private to the kernel. 
The processor then pushes the original values of all of these registers, along with 
the contents of the EFLAGS register, onto this new kernel stack before starting to 
run the kernel's exception handler code. The new ESP and SS do not come from 
the IDT like the EIP and CS do, but instead from a separate structure called the 
task state segment (TSS).  

Although the TSS is a somewhat large and complex data structure that can 
potentially serve a variety of purposes, in JOS it will only be used to define the 
kernel stack that the processor should switch to when it transfers from user to 
kernel mode. Since "kernel mode" in JOS is privilege level 0 on the x86, the 
processor uses the ESP0 and SS0 fields of the TSS to define the kernel stack when 
entering kernel mode; none of the other fields in the TSS will ever ever be used in 
JOS.  

Types of Exceptions and Interrupts 

All of the synchronous exceptions that the x86 processor can generate internally use 
interrupt numbers between 0 and 31, and therefore map to IDT entries 0-31. For example, 
the page fault handler is ``hard-wired'' by Intel to interrupt number 14. Interrupt numbers 
greater than 31 are only used by software interrupts, which can be generated by the INT 
instruction, or asynchronous hardware interrupts, caused by external devices when they 
need attention.  

In this section we will extend JOS to handle the internally generated x86 exceptions in 
the 0-31 that are currently defined by Intel. In addition, in the next section we will also 
make JOS handle software interrupt number 0x30, which JOS (fairly arbitrarily) uses as 
its system call interrupt number. In Lab 4 we will extend JOS to handle externally 
generated hardware interrupts such as the clock interrupt.  



An Example 

Let's put these pieces together and trace through an example. Let's say the processor is 
executing code in a user environment and encounters a divide instruction that attempts to 
divide by zero.  

1. The processor switches to the stack defined by the SS0 and ESP0 fields of the 
TSS, which in JOS will hold the values GD_KD and KSTACKTOP, respectively.  

2. The processor pushes the exception parameters on the kernel stack, starting at 
address KSTACKTOP:  

3.                      +--------------------+ KSTACKTOP              
4.                      | 0x00000   old SS   |     " - 4 
5.                      |      old ESP       |     " - 8 
6.                      |     old EFLAGS     |     " - 12 
7.                      | 0x00000 | old CS   |     " - 16 
8.                      |      old EIP       |     " - 20 <---- ESP  
9.                      +--------------------+              

  

10. Because we're handling a divide error, which is interrupt number 0 on the x86, the 
processor reads IDT entry 0 and sets CS:EIP to point to the handler function 
defined there.  

11. The handler function takes control and handles the exception, for example by 
terminating the user environment.  

For certain types of x86 exceptions, in addition to the "standard" five words above, the 
processor pushes onto the stack another word containing an error code. The page fault 
exception, number 14, is an important example. See the 80386 manual to determine for 
which exception numbers the processor pushes an error code, and what the error code 
means in that case. When the processor pushes an error code, the stack would look as 
follows at the beginning of the exception handler when coming in from user mode:  

                     +--------------------+ KSTACKTOP              
                     | 0x00000   old SS   |     " - 4 
                     |      old ESP       |     " - 8 
                     |     old EFLAGS     |     " - 12 
                     | 0x00000 | old CS   |     " - 16 
                     |      old EIP       |     " - 20 
                     |     error code     |     " - 24 <---- ESP  
                     +--------------------+              
  

Nested Exceptions and Interrupts 

The processor can take exceptions and interrupts both from kernel and user mode. It is 
only when entering the kernel from user mode, however, that the x86 processor 
automatically switches stacks before pushing its old register state onto the stack and 
invoking the appropriate exception handler through the IDT. If the processor is already in 
kernel mode when the interrupt or exception occurs (the low 2 bits of the CS register are 



already zero), then the kernel just pushes more values on the same kernel stack. In this 
way, the kernel can gracefully handle nested exceptions caused by code within the kernel 
itself. This capability is an important tool in implementing protection, as we will see later 
in the section on system calls.  

If the processor is already in kernel mode and takes a nested exception, since it does not 
need to switch stacks, it does not save the old SS or ESP registers. For exception types 
that do not push an error code, the kernel stack therefore looks like the following on entry 
to the exception handler:  

                     +--------------------+ <---- old ESP 
                     |     old EFLAGS     |     " - 4 
                     | 0x00000 | old CS   |     " - 8 
                     |      old EIP       |     " - 12 
                     +--------------------+              

For exception types that push an error code, the processor pushes the error code 
immediately after the old EIP, as before.  

There is one important caveat to the processor's nested exception capability. If the 
processor takes an exception while already in kernel mode, and cannot push its old state 
onto the kernel stack for any reason such as lack of stack space, then there is nothing the 
processor can do to recover, so it simply resets itself. Needless to say, any decent kernel 
should be designed so that this will never happen unintentionally.  

Setting Up the IDT 

You should now have the basic information you need in order to set up the IDT and 
handle exceptions in JOS. For now, you will set up the IDT to handle all the to handle 
interrupt numbers 0-31 (the processor exceptions) and interrupts 32-47 (the device IRQs). 
We may add additional interrupts later.  

The header files inc/trap.h and kern/trap.h contain important definitions related to 
interrupts and exceptions that you will need to become familiar with. The file 
kern/trap.h contains trap-related definitions that will remain strictly private to the 
kernel, while the companion header file inc/trap.h contains general definitions that 
may also be useful to user-level programs and libraries in the system.  

Note: Some of the exceptions in the range 0-31 are defined by Intel to be reserved. Since 
they will never be generated by the processor, it doesn't really matter how you handle 
them. Do whatever you think is cleanest.  

The overall flow of control that you should achieve is depicted below:  

      IDT                   trapentry.S         trap.c 
    
+----------------+                         



|   &handler1    |---------> handler1:          trap (struct Trapframe 
*tf) 
|                |             // do stuff      { 
|                |             call trap          // handle the 
exception/interrupt 
|                |             // undo stuff    } 
+----------------+ 
|   &handler2    |--------> handler2: 
|                |            // do stuff 
|                |            call trap 
|                |            // undo stuff 
+----------------+ 
       . 
       . 
       . 
+----------------+ 
|   &handlerX    |--------> handlerX: 
|                |             // do stuff 
|                |             call trap 
|                |             // undo stuff 
+----------------+ 

Each exception or interrupt should have its own handler in trapentry.S and 
idt_init() should initialize the IDT with the addresses of these handlers. Each of the 
handlers should build a struct Trapframe (see inc/trap.h) on the stack and call into 
trap() (in trap.c) with a pointer to the Trapframe.  

After control is passed to trap(), that function handles the exception/interrupt or 
dispatches the exception/interrupt to a specific handler function. If and when the trap() 
function returns, the code in trapentry.S restores the old CPU state saved in the 
Trapframe and then uses the iret instruction to return from the exception.  

Exercise 4. Edit trapentry.S and trap.c and implement the features 
described above. The macros TRAPHANDLER and TRAPHANDLER_NOEC in 
trapentry.S should help you, as well as the T_* defines in 
inc/trap.h. You will need to add an entry point in trapentry.S 
(using those macros) for each trap defined in inc/trap.h. You will 
also need to modify idt_init() to initialize the idt to point to each of 
these entry points defined in trapentry.S; the SETGATE macro will be 
helpful here.  

Hint: your code should perform the following steps:  

1. push values to make the stack look like a struct Trapframe  
2. load GD_KD into %ds and %es  
3. pushl %esp to pass a pointer to the Trapframe as an argument 

to trap()  
4. call trap  
5. pop the values pushed in steps 1-3  



6. iret  

Consider using the pushal and popal instructions; they fit nicely with 
the layout of the struct Trapframe.  

Test your trap handling code using some of the test programs in the 
user directory that cause exceptions before making any system calls, 
such as user/divzero. You should be able to get make grade to 
succeed on the divzero, softint, and badsegment tests at this point.  

Challenge! You probably have a lot of very similar code right now, 
between the lists of TRAPHANDLER in trapentry.S and their 
installations in trap.c. Clean this up. Change the macros in 
trapentry.S to automatically generate a table for trap.c to use. Note 
that you can switch between laying down code and data in the 
assembler by using the directives .text and .data.  

Questions 

Answer the following questions in your answers.txt:  

1. What is the purpose of having an individual handler function for each 
exception/interrupt? (i.e., if all exceptions/interrupts were delivered to the same 
handler, what feature that exists in the current implementation could not be 
provided?)  

2. Did you have to do anything to make the user/softint program behave 
correctly (i.e., as the grade script expects)? Why is this the correct behavior? What 
happens if the kernel actually allows softint's int $14 instruction to invoke the 
kernel's page fault handler (which is interrupt number 14)?  

Part B: Page Faults, Breakpoints Exceptions, and 
System Calls 
Now that your kernel has basic exception handling capabilities, you will refine it to 
provide important operating system primitives that depend on exception handling.  

Handling Page Faults 

The page fault exception, interrupt number 14 (T_PGFLT), is a particularly important one 
that we will exercise heavily throughout this lab and the next. When the processor takes a 
page fault, it stores the linear address that caused the fault in a special processor control 
register, CR2. In trap.c we have provided the beginnings of a special function, 
page_fault_handler(), to handle page fault exceptions.  

Exercise 5. Modify trap_dispatch() to dispatch page fault 



exceptions to page_fault_handler(). You should now be able to get 
make grade to succeed on the faultread, faultreadkernel, 
faultwrite, and faultwritekernel tests. If any of them don't work, 
figure out why and fix them.  

You will further refine the kernel's page fault handling below, as you implement system 
calls.  

The Breakpoint Exception 

The breakpoint exception, interrupt number 3 (T_BRKPT), is normally used to allow 
debuggers to insert breakpoints in a program's code by temporarily replacing the relevant 
program instruction with the special 1-byte int3 software interrupt instruction. In JOS 
we will abuse this exception slightly by turning it into a primitive pseudo-system call that 
any user environment can use to invoke the JOS kernel monitor. This usage is actually 
somewhat appropriate if we think of the JOS kernel monitor as a primitive debugger. The 
user-mode implementation of panic() in lib/panic.c, for example, performs an int3 
after displaying its panic message.  

Exercise 6. Modify trap_dispatch() to make breakpoint exceptions 
invoke the kernel monitor. You should now be able to get make grade 
to succeed on the breakpoint test.  

Challenge! Modify the JOS kernel monitor so that you can 'continue' 
execution from the current location (e.g., after the int3, if the kernel 
monitor was invoked via the breakpoint exception), and so that you can 
single-step one instruction at a time. You will need to understand 
certain bits of the EFLAGS register in order to implement single-
stepping.  

Optional: If you're feeling really adventurous, find some x86 
disassembler source code - e.g., by ripping it out of Bochs, or out of 
GNU binutils, or just write it yourself - and extend the JOS kernel 
monitor to be able to disassemble and display instructions as you are 
stepping through them. Combined with the symbol table loading from 
lab 2, this is the stuff of which real kernel debuggers are made.  

Questions 

Answer the following questions in your answers.txt:  

1. The break point test case will either generate a break point exception of a general 
protect fault depending on how you initialized the break point entry in the IDT 
(i.e., your call to SETGATE from idt_init). Why? How did you need to set it in 
order to get the breakpoint exception to work as specified above?  



2. What do you think is the point of these mechanisms, particularly in light of what 
the user/softint test program does?  

System calls 

User processes ask the kernel to do things for them by invoking system calls. When the 
user process invokes a system call, the processor enters kernel mode, the processor and 
the kernel cooperate to save the user process's state, the kernel executes appropriate code 
in order to carry out the system call, and then resumes the user process. The exact details 
of how the user process gets the kernel's attention and how it specifies which call it wants 
to execute vary from system to system.  

In the JOS kernel, we will use the int instruction, which causes a processor interrupt. In 
particular, we will use int $0x30 as the system call interrupt. We have defined the 
constant T_SYSCALL to 0x30 for you. You will have to set up the interrupt descriptor to 
allow user processes to cause that interrupt. Note that interrupt 0x30 cannot be generated 
by hardware, so there is no ambiguity caused by allowing user code to generate it.  

We will pass the system call number and the system call arguments in registers. This 
way, we don't need to grub around in the user environment's stack or instruction stream. 
The system call number will go in %eax, and the arguments (up to five of them) will go in 
%edx, %ecx, %ebx, %edi, and %esi, respectively. The kernel passes the return value back 
in %eax. The assembly code to invoke a system call has been written for you, in 
syscall() in lib/syscall.c. You should read through it and make sure you understand 
what is going on.  

Exercise 7. Add a handler in the kernel for interrupt number 
T_SYSCALL. You will have to edit kern/trapentry.S and 
kern/trap.c's idt_init(). You also need to change 
trap_dispatch() to handle the system call interrupt by calling 
syscall() (defined in kern/syscall.c) with the appropriate 
arguments, and then arranging for the return value to be passed back to 
the user process in %eax. Finally, you need to implement syscall() in 
kern/syscall.c. Make sure syscall() returns -E_INVAL if the 
system call number is invalid. You should read and understand 
lib/syscall.c (especially the inline assembly routine) in order to 
confirm your understanding of the system call interface. You may also 
find it helpful to read inc/syscall.h.  

Run the user/hello program under your kernel. It should print 
"hello, world" on the console and then cause a page fault in user 
mode. If this does not happen, it probably means your system call 
handler isn't quite right.  

Challenge! Implement system calls using the sysenter and sysexit 
instructions instead of using int 0x30 and iret.  



The sysenter/sysexit instructions were designed by Intel to be 
faster than int/iret. They do this by using registers instead of the 
stack and by making assumptions about how the segmentation registers 
are used. The exact details of these instructions can be found in 
Volume 2B of the Intel reference manuals. 
The easiest way to add support for these instructions in JOS is to add a 
sysenter_handler in kern/trapentry.S that creates the same trap 
frame that is normally created by an int 0x30 instruction (being sure 
to save the correct return address and stack pointer provided by the 
user environment). Then, instead of calling into trap, push the 
arguments to syscall and call syscall directly. Once syscall 
returns, set everything up for and execute the sysexit instruction.  
You will also need to add code to kern/init.c to set up the necessary 
model specific registers (MSRs). Look at the enable_sep_cpu 
function in this diff for an example of this, and you can find an 
implementation of wrmsr to add to /inc/x86.h here). Finally, 
lib/syscall.c must be changed to support making a system call with 
sysenter. Here is a possible register layout for the sysenter 
instruction: 
 eax                - syscall number 
 edx, ecx, ebx, edi - arg1, arg2, arg3, arg4 
 esi                - return pc 
 ebp                - return esp 
 esp                - trashed by sysenter 
         
GCC's inline assembler does not support directly loading values into 
ebp, so you will need to add code to save (push) and restore (pop) it 
yourself (and you may want to do the same thing for esi as well). The 
return address can be put into esi by using an instruction like leal 
after_sysenter_label, %%esi.  
Note that this only supports 4 arguments, so you will need to leave the 
old method of doing system calls around if you want to support 5 
argument system calls as well. 
Finally, in order for Bochs to support these instructions, it must be 
compiled with the --enable-sep option, in addition to the other 
options listed on the tools page.  

User-mode startup 

The user programs start running at the top of lib/entry.S. After some setup, this code 
calls libmain(), in lib/libmain.c. The libmain() function needs to initialize a global 
pointer env to point at this environment's struct Env in the envs[] array. (Note that 
lib/entry.S has already defined envs to point at the UENVS mapping you set up in lab 
2.) Hint: look in inc/env.h and use sys_getenvid.  

http://lwn.net/Articles/18414/
http://www.garloff.de/kurt/linux/k6mod.c


libmain() then calls umain, which, in the case of the hello program, is in 
user/hello.c. Note that after printing "hello, world", it tries to access env->env_id. 
This is why it faulted earlier. Now that you've initialized env properly, it should not fault. 
If it still faults, you probably haven't mapped the UENVS area user-readable (back in lab 1 
in pmap.c; this is the first time we've actually used the UENVS area).  

Exercise 8. Add the required code to the user library, then boot your 
kernel. You should see user/hello print "hello, world" and then 
print "i am environment 00000800". user/hello then attempts to 
"exit" by calling sys_env_destroy() (see lib/libmain.c and 
lib/exit.c). Since the kernel currently only supports one user 
environment, it should report that it has destroyed the only 
environment and then drop into the kernel monitor.  

Page faults and memory protection 

Memory protection is a crucial feature of an operating system. By using memory 
protection, the operating system can ensure that bugs in one program cannot corrupt other 
programs or corrupt the operating system itself.  

Typically, operating systems rely on hardware support to implement memory protection. 
The OS keeps the hardware informed about which virtual addresses are valid and which 
are not. When a program tries to access an invalid address or one for which it has no 
permissions, the processor stops the program at the instruction causing the fault and then 
traps into the kernel with information about the attempted operation. If the fault is 
fixable, the kernel can fix it and let the program continue running. If the fault is not 
fixable, then the program cannot continue, since it will never get past the instruction 
causing the fault.  

As an example of a fixable fault, consider an automatically extended stack. In many 
systems the kernel initially allocates a single stack page, and then if a program faults 
accessing pages further down the stack, the kernel will allocate those pages automatically 
and let the program continue. By doing this, the kernel only allocates as much stack 
memory as the program needs, but the program can work under the illusion that it has an 
arbitrarily large stack.  

System calls present an interesting problem for memory protection. Most system call 
interfaces let user programs pass pointers to the kernel. These pointers point at user 
buffers to be read or written. The kernel then dereferences these pointers while carrying 
out the system call. There are two problems with this:  

1. A page fault in the kernel is taken a lot more seriously than a page fault in a user 
program. If the kernel page faults, that's usually a kernel bug, and the fault 
handler will panic the kernel (and hence the whole system). In a system call, when 
the kernel is dereferencing pointers to the user's address space, we need a way to 



remember that any page faults these dereferences cause are actually on behalf of 
the user program.  

2. The kernel typically has more memory permissions than the user program. The 
user program might ask the kernel to read from or write to a location in kernel 
memory that the user program cannot access but that the kernel can. If the kernel 
is not careful, a buggy or malicious user program can trick the kernel into using 
its greater privilege in unintended ways, possibly so as to destroy the integrity of 
the kernel completely.  

For both of these reasons the kernel must be extremely careful when handling pointers 
presented by user programs.  

You will now implement solutions to these two problems with a single mechanism. The 
gist of the approach that this year's JOS kernel uses (which is different from last year's) is 
to scrutinize all pointers passed from userspace into the kernel, and to perform in kernel 
code what the processor does in hardware. That is, when the user passes the kernel a 
pointer, the kernel will check that it's a user-accessible address, and that the user page 
tables are correctly configured to allow the memory operation to go through.  

Thus, the kernel ought never induce a page fault when handling a system call. If the 
kernel does page fault, it should panic and terminate. (Why wouldn't this behavior be 
acceptable for a "commercial" OS such as Linux or FreeBSD?)  

Exercise 9. Change kern/trap.c's to panic if a page fault happens in 
kernel mode.  

Hint: to determine whether a fault happened in user mode or in kernel 
mode, check the low bits of the tf_cs.  

Read user_mem_assert in kern/pmap.c and implement 
user_mem_check in that same file.  

Change kern/syscall.c to sanity check arguments to system calls.  

Change kern/init.c to run user/buggyhello instead of 
user/hello. Compile your kernel and boot it. The environment should 
be destroyed, and the kernel should not panic. You should see:  

 [00001000] user_mem_check assertion failure for 
va 00000001 
 [00001000] free env 00001000 
 Destroyed the only environment - nothing more to 
do! 
  

Note that the same mechanism you just implemented also works for malicious user 
applications (such as user/evilhello).  



Exercise 10.  

Change kern/init.c to run user/evilhello. Compile your kernel 
and boot it. The environment should be destroyed, and the kernel 
should not panic. You should see:  

 [00000000] new env 00001000 
 [00001000] user_mem_check assertion failure for 
va f0100020 
 [00001000] free env 00001000 
  

This completes the lab. Make sure you pass all the gmake grade tests, and hand in your 
work with gmake handin.  
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