
Homework: sleep and wakeup

Read: pipe.c

Hand-In Procedure

You are to turn in this homework at the beginning of lecture. Please write up your
answers to the questions below and hand them in to a 6.828 staff member at the
beginning of lecture.

Introduction

Remember in lecture 7 we discussed locking a linked list implementation. The insert code
was:

 struct list *l;
 l = list_alloc();
 l->next = list_head;
 list_head = l;
and if we run the insert on multiple processors simultaneously with no locking, this
ordering of instructions can cause one of the inserts to be lost:
 CPU1 CPU2

 struct list *l;
 l = list_alloc();
 l->next = list_head;
 struct list *l;
 l = list_alloc();
 l->next = list_head;
 list_head = l;
 list_head = l;
(Even though the instructions can happen simultaneously, we write out orderings where
only one CPU is "executing" at a time, to avoid complicating things more than
necessary.)

In this case, the list element allocated by CPU2 is lost from the list by CPU1's update of
list_head. Adding a lock that protects the final two instructions makes the read and write
of list_head atomic, so that this ordering is impossible.

The reading for this lecture is the implementation of sleep and wakeup, which are used
for coordination between different processes executing in the kernel, perhaps
simultaneously.

If there were no locking at all in sleep and wakeup, it would be possible for a sleep and
its corresponding wakeup, if executing simultaneously on different processors, to miss
each other, so that the wakeup didn't find any process to wake up, and yet the process
calling sleep does go to sleep, never to awake. Obviously this is something we'd like to
avoid.

This assignment requires the files xv6.pdf and xv6_rev0.zip. You may download them
from the Assignments page.

Read the code with this in mind.

Questions

(Answer and hand in.)

1. How does the proc_table_lock help avoid this problem? Give an ordering of
instructions (like the above example for linked list insertion) that could result in a wakeup
being missed if the proc_table_lock were not used. You need only include the relevant
lines of code.

2. sleep is also protected by a second lock, its second argument, which need not be the
proc_table_lock. Look at the example in ide.c, which uses the ide_lock. Give an ordering
of instructions that could result in a wakeup being missed if the ide_lock were not being
used. (Hint: this should not be the same as your answer to question 2. The two locks
serve different purposes.)

This completes the homework.

	Homework: sleep and wakeup

