
Homework: Threads and Context
Switching

Read: setjmp.S and proc.c (focus on the code that switches between processes,
specifically scheduler and sched).

Hand-In Procedure

You are to turn in this homework during lecture. Please write up your answers to the
exercises below and hand them in to a 6.828 staff member at the beginning of lecture.

Introduction

In this homework you will investigate how the kernel switches between two processes.

Assignment:

Turn in: Where does the scheduler's stack sit in memory? Is it the same stack that a
running process uses when executing in the kernel? (The scheduler is in proc.c.)

Turn in: What value does setjmp return first to its caller? (Setjmp is in setjmp.S.)

Turn in: What value does setjmp return when it returns the second time to its caller?

Turn in:: If we look at a setjmp on a particular jump buffer followed by a longjmp to
that same buffer (that is, both functions are called once), setjmp returns twice! and
longjmp never returns. How is this accomplished by setjmp.S? (A sentence or two will
suffice.)

In proc.c's scheduler there are two lines:

 if(setjmp(&cpus[cpu()].jmpbuf) == 0)

 longjmp(&p->jmpbuf);

Replace these with:
 cprintf("setjmp called in scheduler\n");
 if(setjmp(&cpus[cpu()].jmpbuf) == 0){
 cprintf("setjmp in scheduler returned 0; longjmp\n");
 longjmp(&p->jmpbuf);
 }else
 cprintf("setjmp in scheduler returned 1\n");

Similarly, in sched, replace:

 if(setjmp(&p->jmpbuf) == 0)
 longjmp(&cpus[cpu()].jmpbuf);
with

This assignment requires the files xv6.pdf and xv6_rev0.zip. You may download them
from the Assignments page.

 cprintf("setjmp called in sched\n");
 if(setjmp(&p->jmpbuf) == 0){
 cprintf("setjmp in sched returned 0; longjmp\n");
 longjmp(&cpus[cpu()].jmpbuf);
 }else
 cprintf("setjmp in sched returned 1\n");

Rebuild your kernel and boot it on bochs. You will get around 150 printed lines about
setjmp as the kernel boots.

For now, ignore the first few lines of output. You should see a regular six-line pattern
repeated over and over in the printed lines.

Turn in: What is the six-line pattern? (The first line is setjmp called in scheduler.)

Turn in: Why are there two setjmp returned prints for each setjmp called print?

Now look at the first three lines of output about setjmp. You will notice that they do not
follow the pattern. The first two lines are:

 setjmp called in scheduler
 setjmp in scheduler returned 0; longjmp
but then some lines seem to be missing: this first longjmp does not behave like the
others.

Turn in: In the repeated six-line pattern, where does the longjmp in the scheduler return
to (which line number in the printout)? Where does the very first longjmp in the
scheduler return to (which line number in the printout)?

(Feel free to set a breakpoint at the return statement in longjmp to answer this question.)

This completes the homework.

	Homework: Threads and Context Switching

