Evaluation of Predictive Models

Assessing calibration and discrimination Examples

Decision Systems Group, Brigham and Women's Hospital Harvard Medical School

Main Concepts

- Example of a Medical Classification System
- Discrimination
 - Discrimination: sensitivity, specificity, PPV, NPV, accuracy, ROC curves, areas, related concepts
- Calibration
 - Calibration curves
 - Hosmer and Lemeshow goodness-of-fit

Example I

Modeling the Risk of Major In-Hospital Complications Following Percutaneous Coronary Interventions

Frederic S. Resnic, Lucila Ohno-Machado, Gavin J. Blake, Jimmy Pavliska, Andrew Selwyn, Jeffrey J. Popma

[Simplified risk score models accurately predict the risk of major in-hospital complications following percutaneous coronary intervention.

Am J Cardiol. 2001 Jul 1;88(1):5-9.]

Background

- Interventional Cardiology has changed substantially since estimates of the risk of in-hospital complications were developed
 - coronary stents
 - glycoprotein IIb/IIIa antagonists
- Alternative modeling techniques may offer advantages over

Multiple Logistic Regression

- prognostic risk score models: simple, applicable at bedside
- artificial neural networks: potential superior discrimination

Objectives

- Develop a contemporary dataset for model development:
 - prospectively collected on all consecutive patients at Brigham and Women's Hospital, 1/97 through 2/99
 - complete data on 61 historical, clinical and procedural covariates
- Develop and compare models to predict outcomes
 - Outcomes: death and combined death, CABG or MI (MACE)
 - Models: multiple logistic regression, prognostic score models, artificial neural networks
 - Statistics: c-index (equivalent to area under the ROC curve)
- Validation of models on independent dataset: 3/99 12/99

Dataset: Attributes Collected

History	Presentation	Angiographic	Procedural	Operator/Lab
age gender diabetes iddm history CABG Baseline creatinine CRI ESRD hyperlipidemia	acute MI primary rescue CHF class angina class Cardiogenic shock failed CABG	occluded lesion type (A,B1,B2,C) graft lesion vessel treated ostial	number lesions multivessel number stents stent types (8) closure device gp 2b3a antagonists dissection post rotablator atherectomy angiojet max pre stenosi max post stenos no reflow	

Data Source:

Medical Record Clinician Derived Other

Logistic and Score Models for Death

Logistic Regression Model

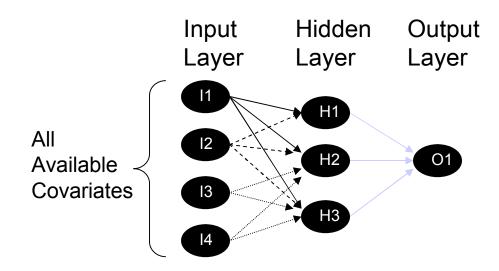
Prognostic Risk Score Model

Odds Ratio	
2.51	
2.12	
2.06	
8.41	
5.93	
0.57	
0.53	
7.53	
1.70	
2.78	
2.58	

Risk Value	
2 1 4 3 -1 -1 4	
2 2	

Artificial Neural Networks

 Artificial Neural Networks are non-linear mathematical models which incorporate a layer of hidden "nodes" connected to the input layer (covariates) and the output.



Evaluation Indices

General indices

• Brier score (a.k.a. mean squared error)

$$\frac{\sum (e_i - o_i)^2}{n}$$

Discrimination Indices

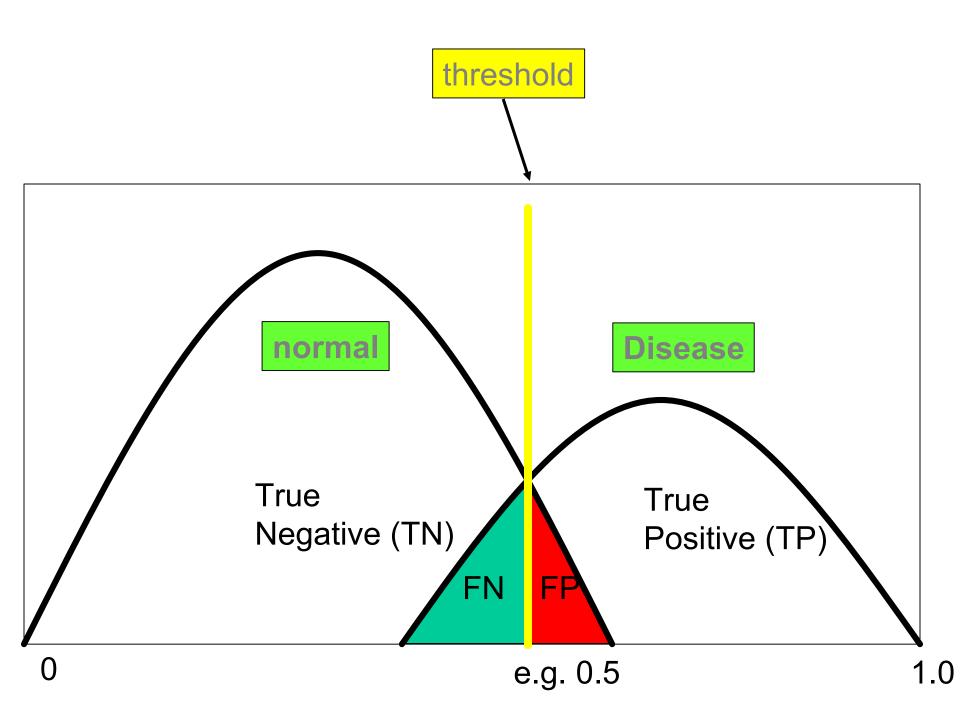
Discrimination

• The system can "somehow" differentiate between cases in different categories

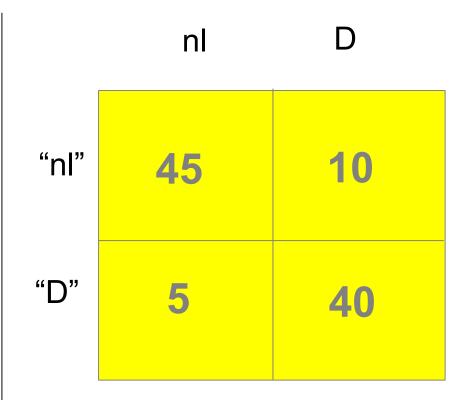
- Binary outcome is a special case:
 - diagnosis (differentiate sick and healthy individuals)
 - prognosis (differentiate poor and good outcomes)

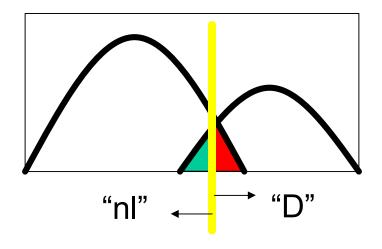
Discrimination of Binary Outcomes

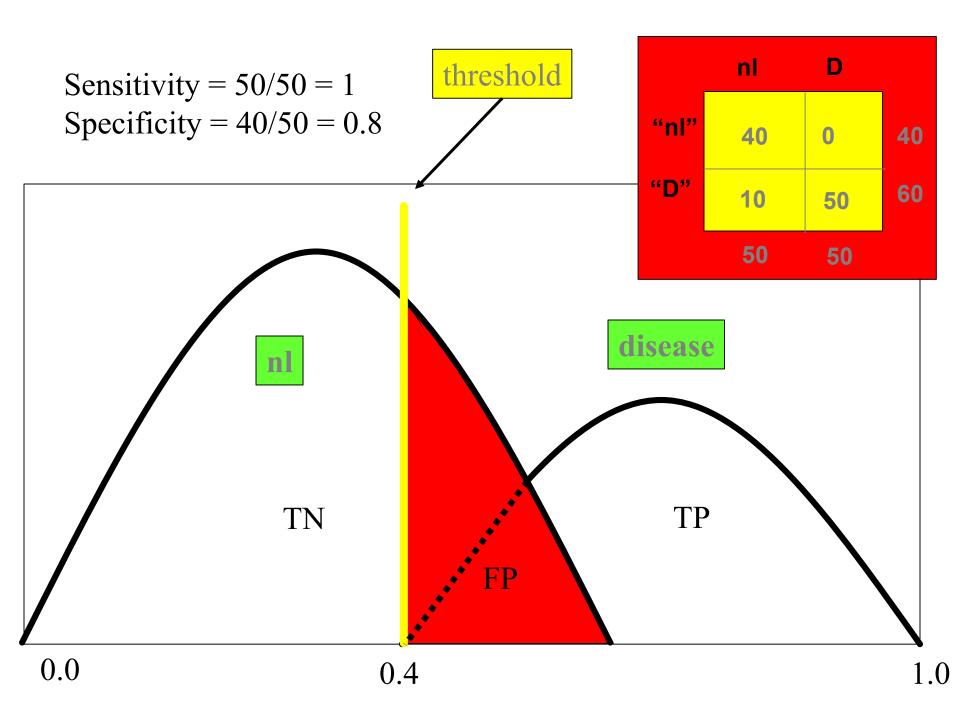
- **Real** outcome (true outcome, also known as "gold standard") is 0 or 1, estimated outcome is usually a number between 0 and 1 (e.g., 0.34) or a rank
- In practice, classification into category 0 or 1 is based on Thresholded Results (e.g., if output or probability > 0.5 then consider "positive")
 - Threshold is arbitrary

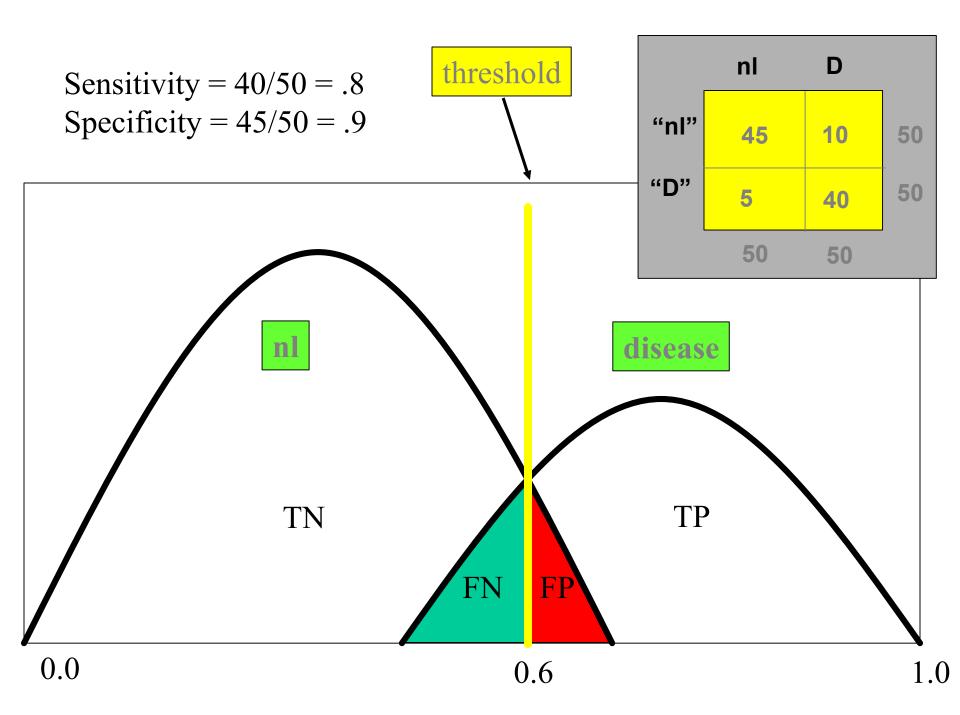


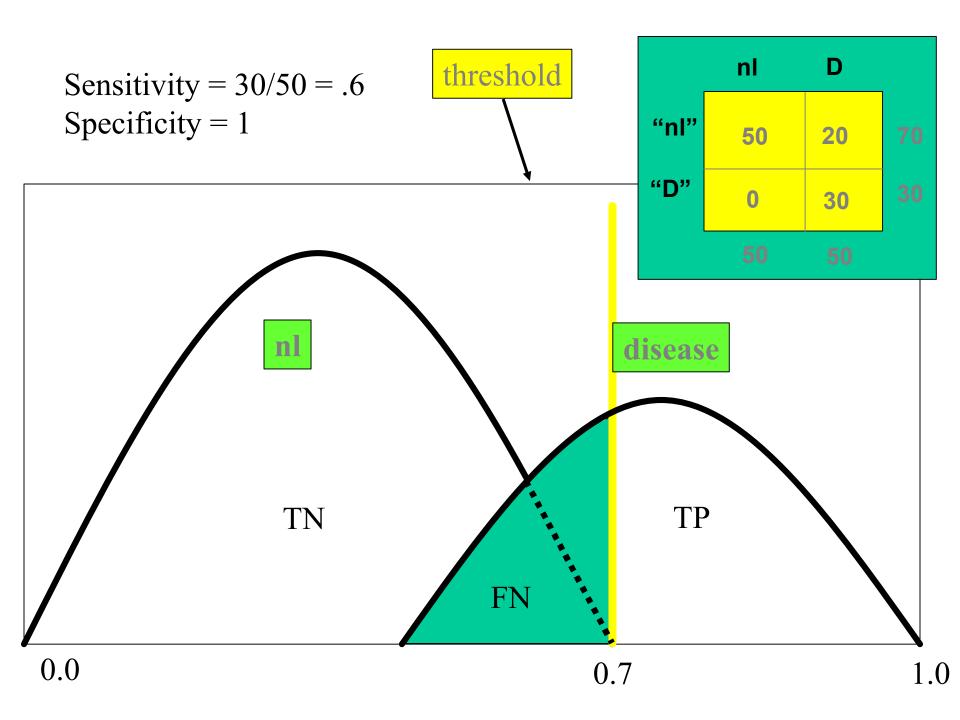
Sens = TP/TP+FN
40/50 = .8
Spec = TN/TN+FP
45/50 = .9
PPV = TP/TP + FP
40/45 = .89
NPV = TN/TN+FN
45/55 = .81
Accuracy = TN + TP
70/100 = .85

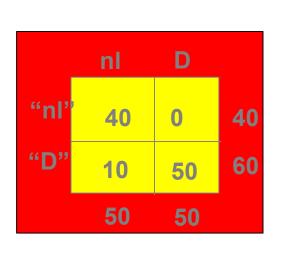


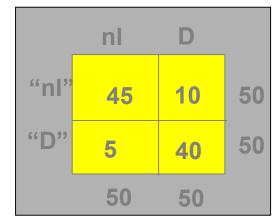


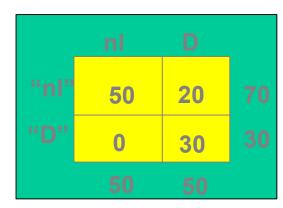


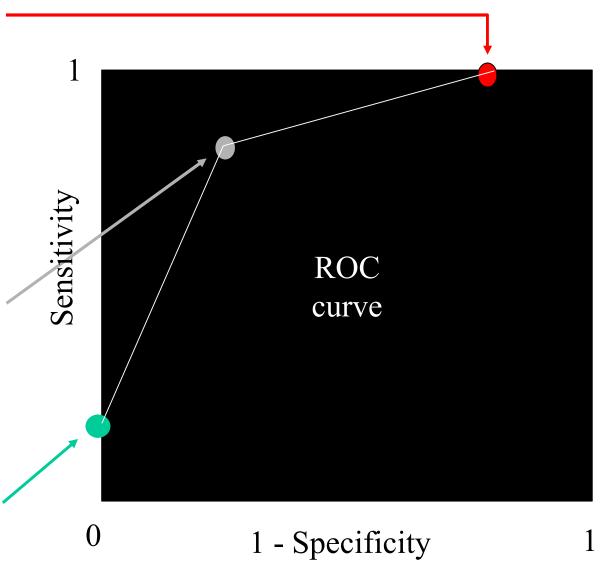


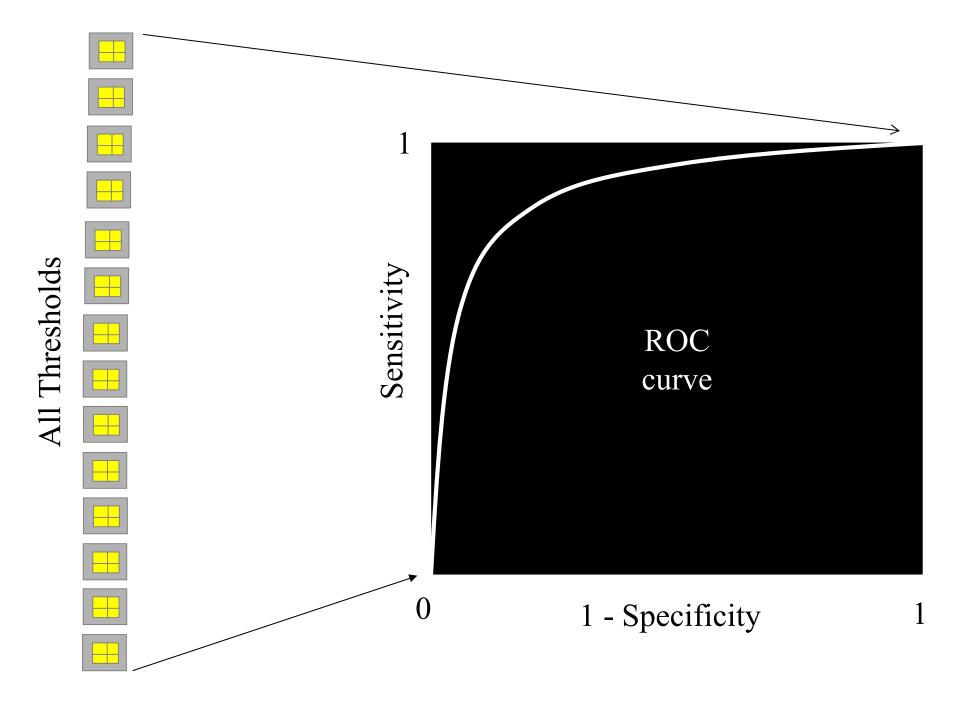




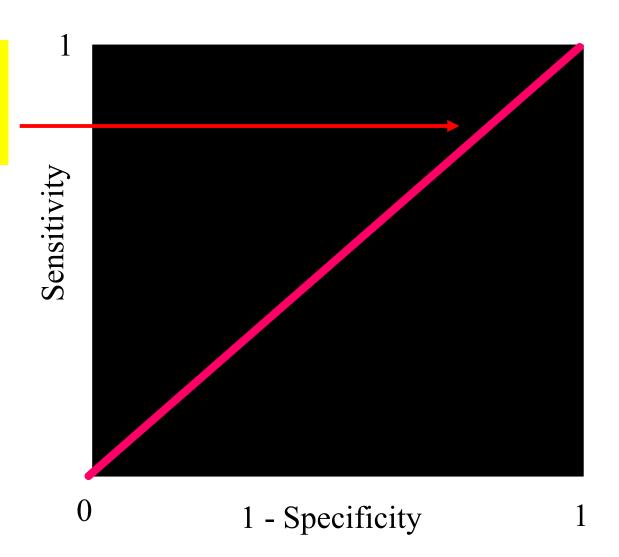






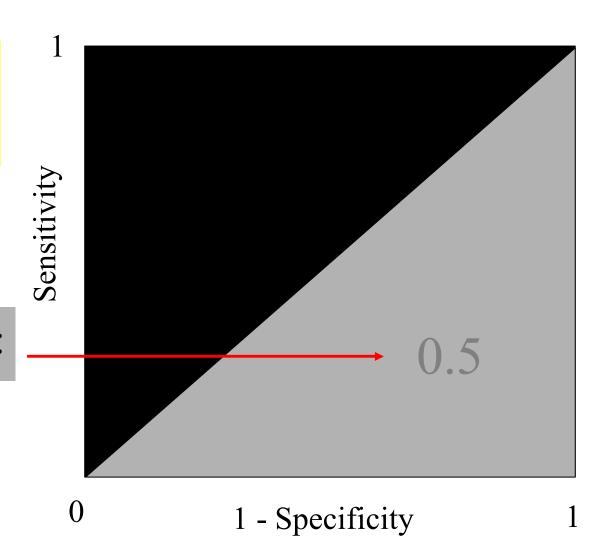


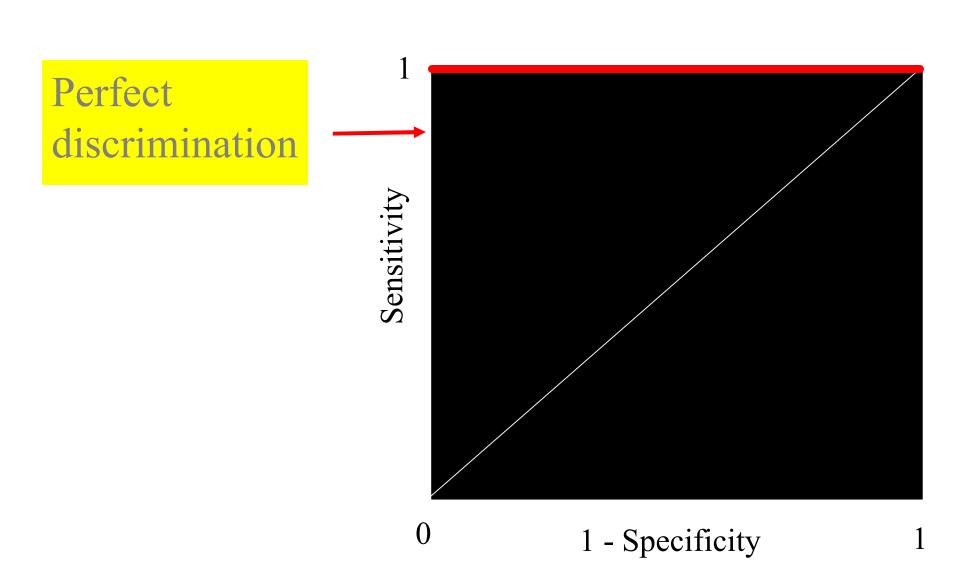
45 degree line: no discrimination

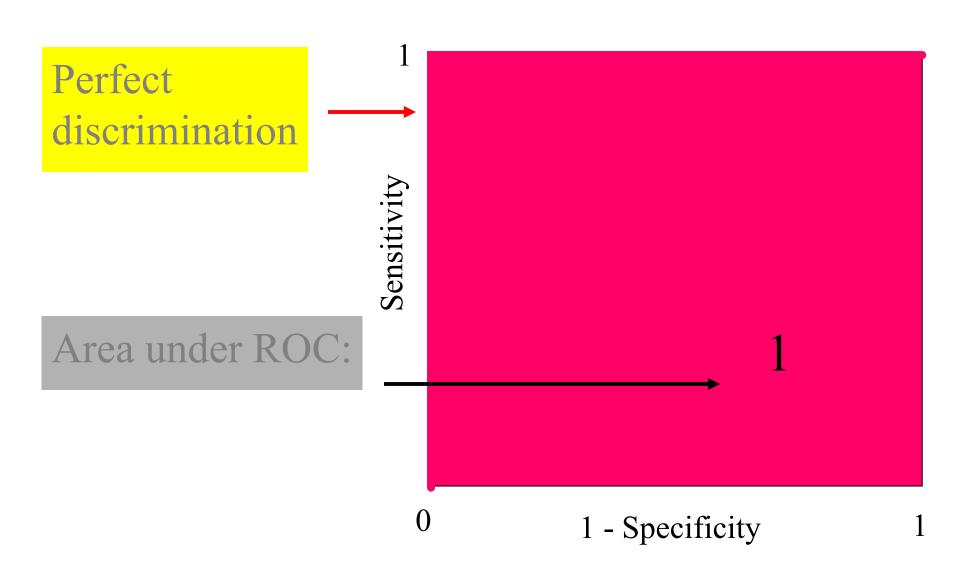


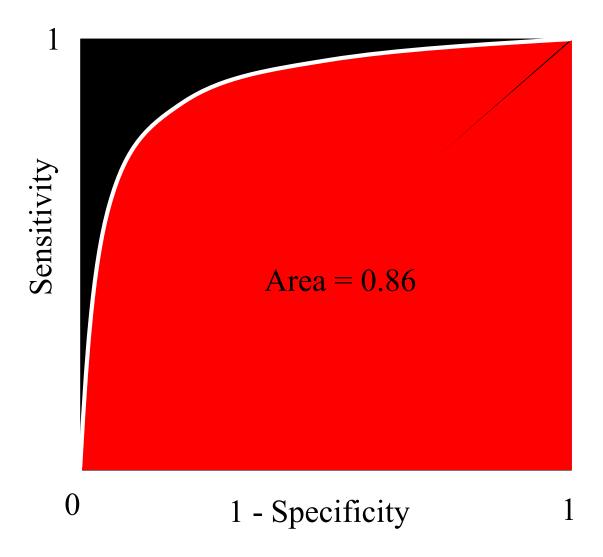
45 degree line: no discrimination

Area under ROC:









What is the area under the ROC?

- An estimate of the **discriminatory performance** of the system
 - the real outcome is binary, and systems' estimates are continuous
 (0 to 1)
 - all thresholds are considered
- **NOT** an estimate on how many times the system will give the "right" answer
- Usually a good way to describe the discrimination if there is no particular trade-off between false positives and false negatives (unlike in medicine...)
 - Partial areas can be compared in this case

Simplified Example

	0.3
	0.2
	0.5
Systems' estimates for 10 patients	0.1
Cystoms Commutes for 10 patients	0.7
"Probability of being sick"	0.8
"Sickness rank"	0.2
(5 are healthy, 5 are sick):	0.5
	0.7
	0.9

Interpretation of the Area divide the groups

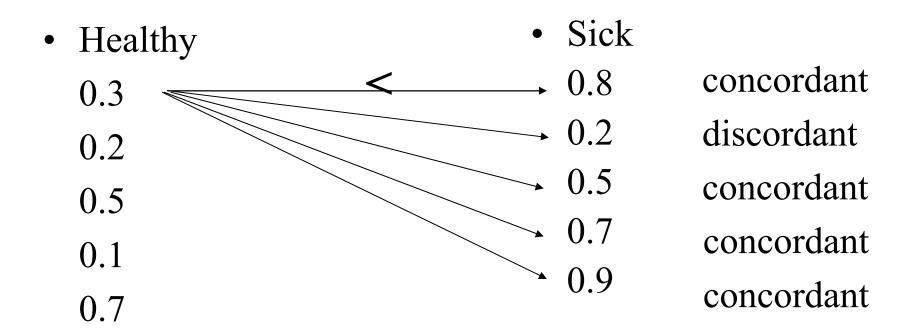
•	Healthy	(real	outcome	is	0)
---	---------	-------	---------	----	----

- 0.3
- 0.2
- 0.5
- 0.1
- 0.7

• Sick (real outcome is1)

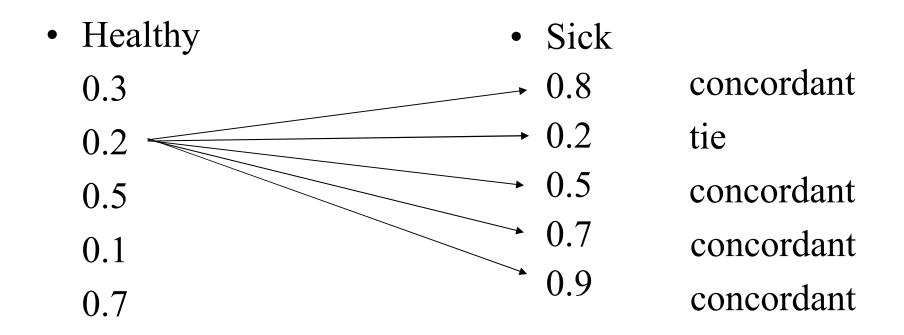
- 0.8
- 0.2
- 0.5
- 0.7
- 0.9

All possible pairs 0-1



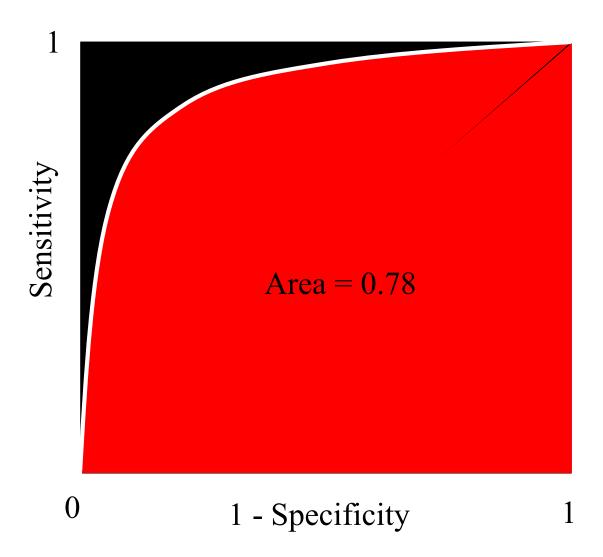
All possible pairs 0-1

Systems' estimates for



C - index

C -index =
$$\frac{\text{Concordant} + 1/2 \text{ Ties}}{\text{All pairs}} = \frac{18 + 1.5}{25}$$



Calibration Indices

Discrimination and Calibration

- Discrimination measures how much the system can discriminate between cases with gold standard '1' and gold standard '0'
- Calibration measures how close the estimates are to a "real" probability
- "If the system is good in discrimination, calibration can be fixed"

Calibration

- System can reliably estimate probability of
 - a diagnosis
 - a prognosis

• Probability is close to the "real" probability

What is the "real" probability?

- Binary events are YES/NO (0/1) i.e., probabilities are 0 or 1 for a given individual
- Some models produce continuous (or quasicontinuous estimates for the binary events)
- Example:
 - Database of patients with spinal cord injury, and a model that predicts whether a patient will ambulate or not at hospital discharge
 - Event is 0: doesn't walk or 1: walks
 - Models produce a probability that patient will walk: 0.05, 0.10, ...

How close are the estimates to the "true" probability for a patient?

- "True" probability can be interpreted as probability within a set of similar patients
- What are similar patients?
 - Clones
 - Patients who look the same (in terms of variables measured)
 - Patients who get similar scores from models
 - How to define boundaries for similarity?

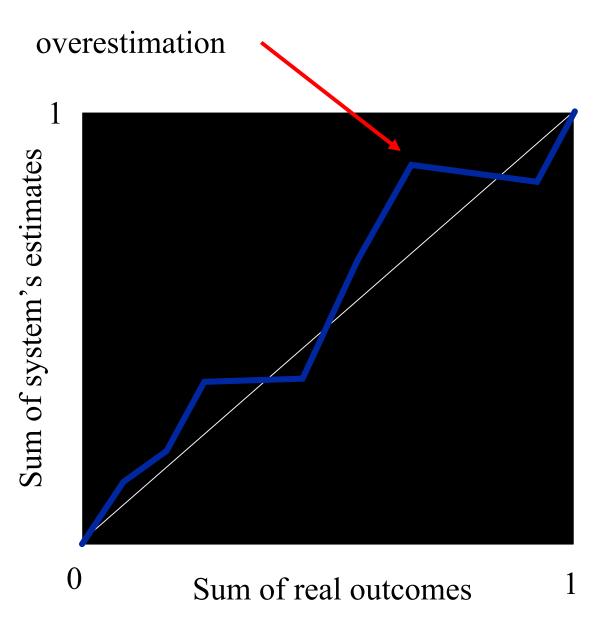
Estimates and Outcomes

- Consider pairs of
 - estimate and true outcome
 - 0.6 and 1
 - 0.2 and 0
 - 0.9 and 0
 - And so on…

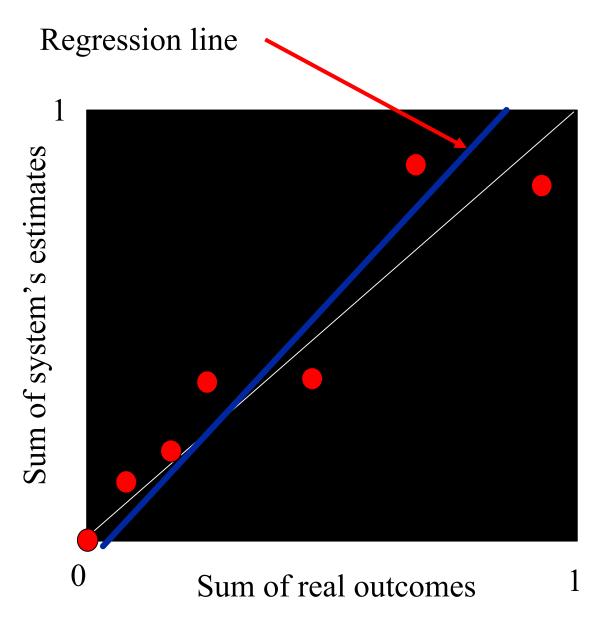
Calibration

Sorted pairs by systems' estimat	Real outcomes
0.1	0
0.2	0
0.2 sum of group = 0.5	$\underline{\hspace{1cm}} 1 \hspace{1cm} \underline{\hspace{1cm}} sum = 1$
0.3	0
0.5	0
0.5 sum of group = 1.3	1 sum = 1
0.7	0
0.7	1
0.8	1
0.9 sum of group = 3.1	1 sum = 3

Calibration Curves



Linear Regression and 45⁰ line



Goodness-of-fit

Sort systems' estimates, group, sum, chi-square

Estimated		Observed	
0.1		0	
0.2		0	
0.2	sum of group = 0.5	1	sum = 1
0.3		0	
0.5		0	
0.5	sum of group $= 1.3$	1	sum = 1
0.7		0	
0.7		1	
0.8		1	
0.9	$\mathbf{sum} \ \mathbf{of} \ \mathbf{group} = 3.1$	1	sum = 3

 $\chi 2 = \Sigma$ [(observed - estimated)²/estimated]

Hosmer-Lemeshow C-hat

Groups based on *n*-iles (e.g., terciles), *n*-2 d.f. training, *n* d.f. test

Measured Groups

Estimated		Observed
0.1		0
0.2		0
0.2 sum =	0.5	1 sum = 1
0.3		0
0.5		0
0.5 sum =	1.3	$1 \mathbf{sum} = 1$
0.7		0
0.7		1
0.8		1
0.9 sum =	3.1	1 sum = 3

"Mirror groups"

Observed
1
1
0 sum = 2
1
1
0 sum = 2
1
0
0
0 sum = 1

Hosmer-Lemeshow H-hat

Groups based on n fixed thresholds (e.g., 0.3, 0.6, 0.9), n-2 d.f.

Measured Groups

Observed
0
0
1
0 sum = 1
0
$1 \mathbf{sum} = 1$
0
1
1
1 sum = 3

"Mirror groups"

Estimated	Observed
0.9	1
0.8	1
0.8	0
0.7 sum = 3.2	1 sum = 2
0.5	1
0.5 sum = 1.0	0 sum = 1
0.3	1
0.3	0
0.2	0
0.1 sum=0.9	0 sum = 1

Covariance decomposition

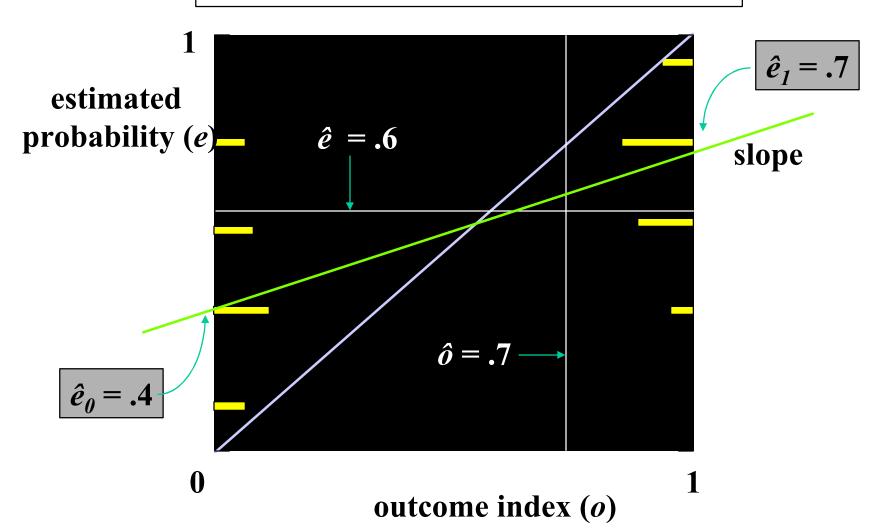
• Arkes et al, 1995

```
Brier = d(1-d) + bias^2 + d(1-d)slope(slope-2) + scatter
```

- where d = prior
- bias is a calibration index
- slope is a discrimination index
- scatter is a variance index

Covariance Graph

PS= .2 bias= -0.1 slope= .3 scatter= .1



Logistic and Score Models for MACE

Logistic Regression
Model

Risk Score Model

Age > 74yrs 1.42 B2/C Lesion 2.44 Acute MI 2.94 Class 3/4 CHF 3.56 Left main PCI 1.43 Ilb/IIIa Use 1.43 Stent Use 0.56 Cardiogenic Shock 3.68 USA 2.60 Tachycardic 1.34 No Reflow 2.73 Unscheduled 1.48 Chronic Renal Insuff. 1.64		Odds Ratio
	B2/C Lesion Acute MI Class 3/4 CHF Left main PCI IIb/IIIa Use Stent Use Cardiogenic Shock USA Tachycardic No Reflow Unscheduled	2.44 2.94 3.56 2.34 1.43 0.56 3.68 2.60 1.34 2.73 1.48

Risk Value
0
2
2
3
2 0
0
-1
3
3 2
0
2
0
1

Model Performance

Development Set (2804 consecutive cases) 1/97-2/99 Validation Set (1460 consecutive cases) 3/99-12/99

Multiple Logistic Regression	Death	MACE
c-Index Training Set	0.880	0.806
c-Index Test Set	0.898	0.851
c-Index Validation Set	0.840	0.787
Prognostic Score Model		
c-Index Training Set	0.882	0.798
c-Index Test Set	0.910	0.846
c-Index Validation Set	0.855	0.780
Artificial Neural Network		
c-Index Training Set	0.950	0.849
c-Index Test Set	0.930	0.870
c-Index Validation Set	0.835	0.811

Model Performance

Validation Set: 1460 consecutive cases 3/1/99-12/31/99

	Death	MACE
Multiple Logistic Regression		
c-Index Validation Set Hosmer-Lemeshow	0.840 16.07*	0.787 24.40*
c-Index Test Set	0.898	0.851
Prognostic Score Models		
c-Index Validation Set Hosmer-Lemeshow	0.855 11.14*	0.780 10.66*
c-Index Test Set	0.910	0.846
Artificial Neural Networks		
c-Index Validation Set Hosmer-Lemeshow	0.835 7.17*	0.811 20.40*
c-Index Test Set	0.930	0.870

^{*} indicates adequate goodness of fit (prob >0.5)

Conclusions

- In this data set, the use of stents and gp IIb/IIIa antagonists are associated with a decreased risk of inhospital death.
- Prognostic risk score models offer advantages over complex modeling systems.
 - Simple to comprehend and implement
 - Discriminatory power approaching full LR and aNN models
- Limitations of this investigation include:
 - the restricted scope of covariates available
 - single high volume center's experience limiting generalizability

Example

Comparison of Practical Prediction Models for Ambulation Following Spinal Cord Injury

Todd Rowland, M.D.

Decision Systems Group

Brigham and Womens Hospital

Study Rationale

- Patient's most common question: "Will I walk again"
- Study was conducted to compare logistic regression, neural network, and rough sets models which predict ambulation at discharge based upon information available at admission for individuals with acute spinal cord injury.
- Create simple models with good performance
- 762 cases training set
- 376 cases test set
 - univariate statistics compared to make sure sets were similar (e.g., means)

SCI Ambulation Classification System

Admission Info (9 items)

system days

injury days

age

gender

racial/ethnic group

level of neurologic fxn

ASIA impairment index

UEMS

LEMS

Ambulation (1 item)

Yes - 1

No - 0

Thresholded Results

		Sens	Spec	NPV	PPV	Accuracy
•	LR	0.875	0.853	0.971	0.549	0.856
•	NN	0.844	0.878	0.965	0.587	0.872
•	RS	0.875	0.862	0.971	0.566	0.864

Brier Scores

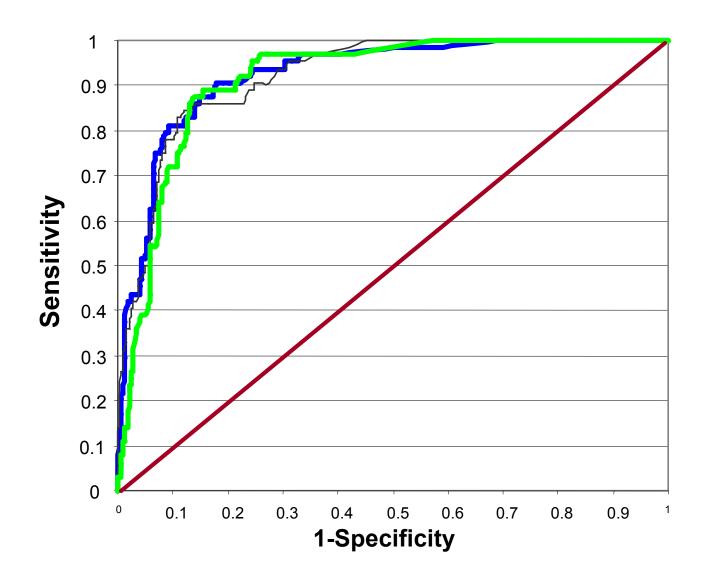
Brier

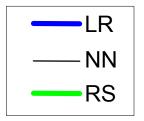
• LR 0.0804

• NN 0.0811

• RS 0.0883

ROC Curves

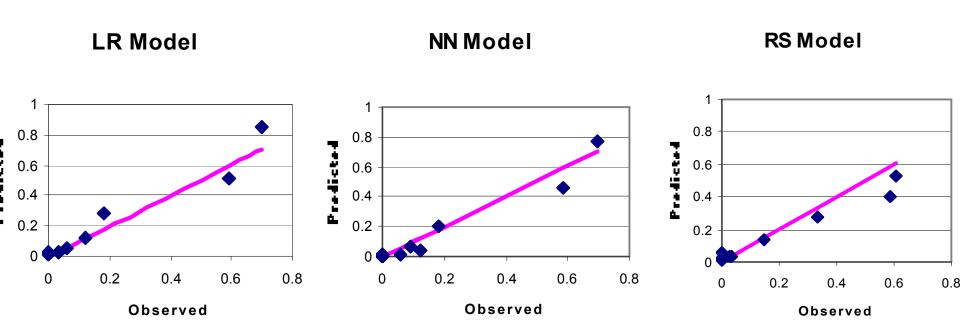




Areas under ROC Curves

Model	ROC Curve Area	Standard Error
Logistic Regression	0.925	0.016
Neural Network	0.923	0.015
Rough Set	0.914	0.016

Calibration curves



Results: Goodness-of-fit

• Logistic Regression:

H-L
$$p = 0.50$$

• Neural Network:

H-L
$$p = 0.21$$

• Rough Sets:

H-L
$$p < .01$$

• p > 0.05 indicates reasonable fit

Conclusion

• For the example, logistic regression seemed to be the best approach, given its simplicity and good performance

• Is it enough to assess discrimination and calibration in one data set?