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Data Mining


� Prediction vs Knowledge Discovery 
� Statistics vs Machine Learning 
� Phases: 

– Problem selection 
– Data preparation 
– Data reduction 
– Method application 
– Evaluation of results 
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Classification Trees


� Data consisting of learning set of cases 
� Each case consists of a set of attributes with 

values and has a known class 
� Classes are one of a small number of 

possible values, usually binary 
� Attributes may be binary, multivalued, or 

continuous 



Background


� Classification trees were invented twice 
� Statistical community: CART 

– Brieman 1984 

� Machine Learning community 
– Quinlan and others 
– Originally called “decision trees” 



Example

Outlook Temp Humidity W indy? Class 
sunny 75 70 yes play 
sunny 80 90 yes dont play 
sunny 85 85 no dont play 
sunny 72 95 no dont play 
sunny 69 70 no play 
cloudy 72 90 yes play 
cloudy 83 78 no play 
cloudy 64 65 yes play 
cloudy 81 75 no play 

rain 71 80 yes dont play 
rain 65 70 yes dont play 
rain 75 80 no play 
rain 68 80 no play 
rain 70 96 no play 



Example: classified

Outlook Temp Humidity W indy? Class 
sunny 75 70 yes play 
sunny 80 90 yes dont play 
sunny 85 85 no dont play 
sunny 72 95 no dont play 
sunny 69 70 no play 
cloudy 72 90 yes play 
cloudy 83 78 no play 
cloudy 64 65 yes play 
cloudy 81 75 no play 

rain 71 80 yes dont play 
rain 65 70 yes dont play 
rain 75 80 no play 
rain 68 80 no play 
rain 70 96 no play 



Tree


� Outlook=sunny 
– Humidity <= 75: play 
– Humidity > 75: don’t play 

� Outlook=cloudy: play 
� Outlook=rain 

– Windy=yes: don’t play 
– Windy=no: play 



Assumptions


� Independence of partitions 
� Branching on individual variables captures 

behavior 
� No linearity assumption 
� Classification 

– Although probabilities possible 



Data Types


� Binary 
� Multiple valued 

– N branches 
– Select subsets of values 

� Continuous 
– Find cut point 



Divide and Conquer


9/14: play


outlook temp humidity windy 

sunny cloudy rain <73 >73 <79 >79 yes no


2/5 4/4 3/5
 5/8 4/6 5/6 4/8 3/6 6/8




Splitting Criteria


� Information gain 
– gain = -Σ p*log2p 

� Gini statistic (weighted average impurity) 
– Gini = 1- Σ p2 

� Information gain ratio 
� Others 



Information Gain


� gain = -Σ p*log2p 
� info() = -9/14*log2(9/14)-5/14*log2(5/14)=.940 bits 
� info(outlk) = 5/14*(-2/5*log2(2/5)-3/5*log2(3/5)) 

+ 4/14*(-4/4*log2(4/4)-0/4*log2(0/4)) + 
5/14*(-3/5*log2(3/5)-2/5*log2(2/5)) 

= .694 bits 
� gain = .246 bits 
� vs info(windy) = .892 bits 



Divide and Conquer


9/14: play


outlook temp humidity windy 

sunny cloudy rain <73 >73 <79 >79 yes no


2/5 4/4 3/5
 5/8 4/6 5/6 4/8 3/6 6/8


Gain: .246 Gain: .048




Continuous Variable

Temp Class Ratio Gain Gini 

64 play 1/1+8/13 0.048 0.577 
65 dont play 1/2+8/12 0.010 0.583 
68 play 2/3+7/11 0.000 0.587 
69 play 3/4+6/10 0.015 0.582 
70 play 4/5+5/9 0.045 0.573 
71 dont play 4/6+5/8 0.001 0.586 
72 dont play 4/7+5/7 0.016 0.582 
72 play 5/8+4/6 0.001 0.586 
75 play 6/9+3/5 0.003 0.586 
75 play 7/10+2/4 0.025 0.579 
80 dont play 7/11+2/3 0.000 0.587 
81 play 8/12+1/2 0.010 0.583 
83 play 9/13+0/1 0.113 0.555 
85 dont play 



Information Gain Ratio


� Attributes with multiple values favored by 
information gain 

� Correction provided by analogous split info 
� split info = -ΣT*log2T 
� split info = -5/14*log2(5/14) -4/14*log2(4/14)-

5/14*log2(5/14) = 1.577 bits 
� gain ratio = .246/1.577 = .156 



Missing Values


� Adjust gain ratio 
– Gain(x) = prob A is known * info(x) 
– Split(x) = -u*log2u-ΣT*log2t 

� Partitioning of training set cases 
– Use weights based on prevalence of values 

� Classification 
– Use weights and sum the weighted leaves 



Example with missing value

Outlook Temp Humidity W indy? Class 
sunny 75 70 yes play 
sunny 80 90 yes dont play 
sunny 85 85 no dont play 
sunny 72 95 no dont play 
sunny 69 70 no play 

? 72 90 yes play 
cloudy 83 78 no play 
cloudy 64 65 yes play 
cloudy 81 75 no play 

rain 71 80 yes dont play 
rain 65 70 yes dont play 
rain 75 80 no play 
rain 68 80 no play 
rain 70 96 no play 



Frequencies for Outlook


play don't play total 
sunny 2 3 5 
cloudy 3 0 3 
rain 3 2 5 
total 8 5 13 



Information Gain With Missing 
� info() = -8/13*log2(8/13)-5/13*log2(5/13)=.961 bits 
� info(outlk) = 5/13*(-2/5*log2(2/5)-3/5*log2(3/5)) 

+ 3/13*(-3/3*log2(3/3)-0/3*log2(0/3)) + 
5/13*(-3/5*log2(3/5)-2/5*log2(2/5)) 

= .747 bits 
� gain = 13/14*(.961-.747) = .199 bits 
� split = -5/14*log2(5/14) -3/14*log2(3/14) -

5/14*log2(5/14) -1/14*log2(1/14) = 1.809 
� gain ratio = .199/1.809 = .110 



Dividing Sunny


Outlook Temp Humidity W indy? Class W eight 
sunny 75 70 yes play 1 
sunny 80 90 yes dont play 1 
sunny 85 85 no dont play 1 
sunny 72 95 no dont play 1 
sunny 69 70 no play 1 
? 72 90 yes play 5/13 



What Next?


� Most trees are less than perfect 
– Variables don’t completely predict the outcome 
– Data is noisy 
– Data is incomplete (not all cases covered) 

� Determine the best tree without overfitting 
or underfitting the data 
– Stop generating branches appropriately 
– Prune back the branches that aren’t justified 



Pruning


� Use a test set for pruning 
– Cost complexity: (CART) 

» E/N + α*L(tree) 

– Reduced error 
» E’ = ΣJ+l(s)/2 
» E+1/2 < e’+se(e’) 

� Cross validation 
– Split training set into N parts 
– Generate N trees, each leaving 1 part for 

validation 



Pessimistic Pruning: (C4.5)


� Estimate errors: ∑N*UCF(E,N) 

� Example: 
– v=a: T (6) U25%(0,6)=.206 
– v=b: T (9) U25%(0,9)=.143 
– v=c: F (1) U25%(0,1)=.750 
– 6*.206+9*.143+1*.750=3.273 

v= 

a b c 

6/6 9/9 0/1


– vs 16* U25%(1,16)=16*.157=2.512 
– => eliminate subtree 



Developing a Tree for Ischemia 

� Data: 
– learning set 3453 cases 
– test set 2320 cases 

� Attributes: 52 
� Types: dichotomous (chest pain), multiple 

(primary symptom), continuous (heart rate) 
� Related attributes 
� Missing values 



Concerns


� Probability rather than classification 
� Compare to other methods (LR, NN) 
� Clinical usefulness 



Probability of Disease


� Fraction at leaf estimates probability


� Small leaves give poor estimates 
� Correction: 	 i(n’-i’)+i’ 

n(n’-i’)+n’ 



••• 

Tree for Ischemia

STCHANGE = 1: ISCHEMIA (166.0/57.3)

STCHANGE = 6: ISCHEMIA (273.0/43.2)

STCHANGE = 0:

| NCPNITRO = 2: NO-ISCHEMIA (1613.0/219.1)

| NCPNITRO = 1:

| | SYMPTOM1 = 2: NO-ISCHEMIA (6.1/4.8)

| | SYMPTOM1 = 4: NO-ISCHEMIA (6.1/4.0)

| | SYMPTOM1 = 7: ISCHEMIA (3.0/2.4)

| | SYMPTOM1 = 8: ISCHEMIA (17.2/9.3)

| | SYMPTOM1 = 9: NO-ISCHEMIA (52.5/16.8)

| | SYMPTOM1 = 1:

| | | SEX = 1: NO-ISCHEMIA (10.1/3.4)

| | | SEX = 2: ISCHEMIA (8.1/4.4)

| | SYMPTOM1 = 3:

| | | AGE <= 63 : ISCHEMIA (7.0/4.2)

| | | AGE > 63 : NO-ISCHEMIA (7.1/3.2)

| | SYMPTOM1 = 10:

| | | SEX = 2: NO-ISCHEMIA (135.5/55.8)

| | | SEX = 1:

| | | | TWAVES = 1: NO-ISCHEMIA (1.0/0.9)

| | | | TWAVES = 2: ISCHEMIA (46.0/15.6)

| | | | TWAVES = 4: ISCHEMIA (10.0/6.4)

| | | | TWAVES = 0:

| | | | | AGE > 76 : NO-ISCHEMIA (12.7/4.7)

| | | | | AGE <= 76 :

| | | | | | SYSBP > 178 : ISCHEMIA (10.2/4.7)


| | | | | | SYSBP <= 178 :

| | | | | | | AGE <= 52 : NO-ISCHEMIA (19.0/10.3)

| | | | | | | AGE > 52 :

| | | | | | | | AGE <= 61 : ISCHEMIA (27.6/12.4)

| | | | | | | | AGE > 61 :

| | | | | | | | | AGE <= 66 : NO-ISCHEMIA (13.0/5.8)

| | | | | | | | | AGE > 66 : ISCHEMIA (12.9/7.7)

| | | | TWAVES = 3:

| | | | | SYSBP <= 126 : NO-ISCHEMIA (6.0/4.0)

| | | | | SYSBP > 126 : ISCHEMIA (17.0/7.1)

STCHANGE = 2:

| SYMPTOM1 = 1: NO-ISCHEMIA (12.2/3.7)

| SYMPTOM1 = 2: NO-ISCHEMIA (1.0/0.9)

| SYMPTOM1 = 4: NO-ISCHEMIA (10.1/2.2)

| SYMPTOM1 = 6: ISCHEMIA (1.0/0.9)

| SYMPTOM1 = 7: NO-ISCHEMIA (3.0/2.4)

| SYMPTOM1 = 8: ISCHEMIA (10.1/2.1)

| SYMPTOM1 = 10: ISCHEMIA (163.2/62.0)

| SYMPTOM1 = 3:

| | AGE <= 67 : ISCHEMIA (9.1/5.5)

| | AGE > 67 : NO-ISCHEMIA (13.1/4.9)

| SYMPTOM1 = 9:

| | AGE > 75 : NO-ISCHEMIA (27.0/6.3)

| | AGE <= 75 :

| | | AGE <= 70 : NO-ISCHEMIA (37.8/11.6)

| | | AGE > 70 : ISCHEMIA (10.3/4.5)




---- ----

Tree for Ischemia: Results

Evaluation on training data (3453 items): 

Before Pruning After Pruning 
Size Errors Size Errors Estimate 
462 494(14.3%) 74 668(19.3%) (24.5%) << 

Evaluation on test data (2320 items): 
Before Pruning After Pruning 
Size Errors Size Errors Estimate 
462 502(21.6%) 74 426(18.4%) (24.5%) << 

(a) (b) <-classified as 

490 223 (a): class ISCHEMIA 
203 1404 (b): class NO-ISCHEMIA 



Issues


� Using related attributes in different parts of 
the tree 
– Use a subset of variables in final tree 

� Overfitting: need more severe pruning 
– Adjust confidence level 

� Small leaves 
– Set a large minimum leaf size 

� Need relative balance of outcomes 
– Enrich outcomes of training set 



Treatment of Variables


� Continuous => Ranges 
– When fine distinctions are inappropriate 
– Avoids overfitting 
– Age: 20,30,40,50,60,70,80,90 

� Categorical => Continuous 
– When there is some order to the categories 
– Natural subsetting 
–	 Smoking: never => 0, quit > 5yr => 1, quit 1-5yr => 2, 

quit < 1yr (or unk) => 3, current => 4 



Treatment of Variables


� Specify a value for unknown 
– Stroke: unknown => false 

� Combining variables 
– “Or” across drugs by class or implications 

� Picking variables on pragmatic grounds 
– Start with many variables and narrow to ones 

most clinically relevant 



Variables Cont’d


� Missing values 
– Force, if likely value different from average of 

knowns 

� Derived values 
– E.g., pulse pressure or product values 
– Combine related variables 



Combinations of Variables
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Comparison with Logistic 
Regression 

� Trees: 
– Automatic selection 
– Classification 
–	 Assumes independence of 

subgroups 
–	 Handles interactions 

automatically 
– Handles missing values 
–	 Linear relationships 

chopped into categories 
– Handles outliers 

� LR: 
– Manual selection 
– Probability 
–	 Assumes same behavior 

over all cases 
–	 Requires interaction 

variables 
– Requires complete data 
–	 Handles linear 

relationships 
– Sensitive to outliers 



Multiple Trees


�	 Weakness: Limited number of categories 
(leaf nodes) in optimal tree – there is only 
one way to categorize a case 

�	 Strategy: Generate several different trees 
and use them to vote on a classification 

�	 Advantage: Allows multiple ways of 
categorizing a case 

� Disadvantage: Makes it much harder to 

explain the classification of a case




Generating Multiple Trees


� Use different subsets of the learning set 
– Bagging: uniformly sampling m cases with 

replacement for each tree 
– Divide set into 10 parts and use each 9 to 

generate a tree 

� Adapt the learning set 
– Boosting: after generating each tree, increase 

the weight of cases misclassified by the tree 



Voting on a Classification


� Equal votes 
� Votes in proportion to the size of the leaves


� Votes weighted by the α used to reweigh 
the cases (standard for boosting) 



Boosting


� C1 constructed from training & e1=error rate 


� W(c) = w(c) / {2e if case misclassified 
2(1-e) otherwise 

�Composite classifier obtained by voting 
�Weight(Ci)= log((1-ei)/ei) 



Boosting


� Adaboost: Freund & Schapire, 1997

– many classifiers: 25, 100, 1000


� Miniboost: Quinlan 1998

– 3 classifiers and take majority vote 
– allows simplifications 
– computationally efficient 



MiniBoosting


� Performance is improved 
� Combined trees are possible but very 

complex 
� Even the leafless branches of combined 

trees contribute to the performance 
improvement 



Empirical Comparison


� Bauer & Kohavi, Mach Learn 36:105, ’99 
� Bagging, AdaBoost, Arc (bag+reweigh) 

– AdaBoost & Arc better than Bagging on avg 
– AdaBoost had problems with noisy datasets 
– Reweighing can be unstable when error rates 

are small 
– Not pruning decreased errors for bagging and 

increased them for AdaBoost 
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