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Algorithmic Complexity and Application to Problem 

Staal A. Vinterbo 

Motivation 

Problem 

We have a new sequence of nucleotides. Which of the ones we 
already have does it match the best? 

How do we address this problem? 

Harvard­MIT Division of Health Science and Technology Has it been solved? 

Is there a problem that is close enough such that we can use it to 
obtain a solution? 

Decision Systems Group, BWH 

Harvard Medical School 
Is the problem feasible?


Nov 2005: HST 951/MIT 6.873 Class
 How feasible? 
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Algorithms and Computational Model Computational Model 

Example 

Definition (Program) 
A finite sequence of computational instructions. 

Definition (Computational Model) 
The abstract representation of a device that can execute programs. 

Definition (Algorithm) 
An program for the solution of a particular problem. 

Convenient: present programs in a “Pascal” like language. 

An abstract “Pascal” machine, composed by a control and processing 
unit able to execute “Pascal” statements, and a set of memory 
locations identified by all variable and constant identifiers defined in 
the algorithm. 
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Introduction 

Introduction 

Introduction 

Introduction 
Computational Model: Algorithm Example Computational Model Cost 

Example 

(x , y ) 
(1) r ← 1 
(2) while y �= 0 
(3) r ← r ∗ x 
(4) y ← y − 1 
(5) return r 

EXP Uniform Cost 
We also assume that all memory locations have the same size, and 
that all values involved in the computation are not larger than that they 
can be stored in a memory location. 
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Computational Model: Example 

Preliminaries 

Preliminaries 
What quantities for Algorithms? 

Example 

(x , y ) 
+ 3y . 

Example 

a ← 5 + v 

+ log |v | 

1 

2 

Our program EXP

has cost 2 

Alternative: logarithmic cost: 

has a cost proportional with the sum of logarithms of values involved: 

log 5 

We need to decide 
Execution cost 

computational steps: the “dominant” operation 
memory used 

Input size, which characteristic parameter describing the input is it 
whose growth towards infinity gives asymptotic computation cost. 
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Preliminaries 

Preliminaries 
Big O Notation 

Preliminaries 

Preliminaries 
Big O Notation 

O(g(n)) = {f (n) there exists c > 0 and n0 > 0 s.t. |
0 ≤ f (n) ≤ cg(n) for all n ≥ n0} 

o(g(n)) = {f (n) for any c > 0 there exists n0 > 0 s.t. |
0 ≤ f (n) < cg(n) for all n ≥ n0}

Ω(g(n)) = {f (n) there exists c > 0 and n0 > 0 s.t. |
0 ≤ cg(n) ≤ f (n) for all n ≥ n0} 

O(g(n)) – the set of functions that are asymptotically bounded 
from above by g. 
Ω(g(n)) – the set of functions that are asymptotically bounded 
from below by g. 

Example 

x 2 − x ? 

x 2 − x ≤ x 2 x0 > 0 ⇒ x 2 − x ∈ O(x 2) 

cx 2 ≤ x 2 − x ⇒ 

c ≤ 
x 2 − x 

x 2 = 1 − 
1 
x 

x →∞→ 1 ⇒ 

cx 2 ≤ x 2 − x c = 1/ x0 = 2 ⇒ 

x 2 − x ∈ Ω(x 2) 

What is 

for 

for 2 and 
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Preliminaries 

Preliminaries 
Big O Notation 

Preliminaries 

Preliminaries 
Big O Notation 

Example 

x 2 − x x 2 x 2/2. 

x 

Θ(g(n)) g tight 

Black – , blue – , red – 

We had that 

The set is then the set of functions for which is a 
asymptotic bound. 

2 − x ∈ O(x 2) ∩ Ω(x 2). In general 

Θ(g(n)) = O(g(n)) ∩ Ω(g(n)). 

o(g(n)) – the set of functions for which g is a lower bound that is 
not tight. 
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Boundedness 

Preliminaries 

Preliminaries 

Preliminaries 

Preliminaries 
Other Useful Equalities 

Further we say that a function f is polynomially bounded if 

f (n) ∈ O(nk ) = nO(1) Using Stirling’s approximation we have that 

for some constant k , and we say that f is polylogarithmically bounded if n! = o(nn ) 

ln(n!) = Θ(n ln n). 
f (n) ∈ O((ln n)k ) = lnO(1) n 

We further have that 
for some constant k . As we have that 

k nO(1) ⊆ O((ln n)k )) ⊆ O(n ) ⊆ O(2k ) ⊆ O(n!) ⊆ O(n ) 
(ln n)a ∈ o(nk ) 

for some constant k > 0. 
for any constant k > 0, we have that polylogarithmically bounded 
functions grow slower than polynomial functions. 
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Analysis of Algorithms 

Analysis of Algorithms 

Analysis of Algorithms 

Analysis of Algorithms 

MERGE(l1, l2) 
(1) if ISEMPTY(l1) 

Merge two sorted list l1 and l2 into a single sorted list. MERGE(l1, l2) (2) return l2 

(1) if ISEMPTY(l1) (3) if ISEMPTY(l2) 
(2) return l2 

(4) return l1 

(3) if ISEMPTY(l2) (5) if ISLESSEQUAL(FIRST(l1),FIRST(l2)) 
(6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2)))(4) return l1 (7) return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2))))

(5) if ISLESSEQUAL(FIRST(l1),FIRST(l2)) 
(6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2))) 
(7) return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2)))) |l1 + |l2| = n, T (n) – number of steps needed to merge. |

n = 1: all we have to do is return non­empty list, T (1) = Θ(1).We assume that all these functions can be done in a constant number 
n = 1: Θ(1) + T (n − 1)of computational steps, i.e., Θ(1) steps. 

Θ(1) for n = 1,
T (n) = 

T (n − 1) + Θ(1) for n > 1. 
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Merge 

Analysis of Algorithms 

Analysis of Algorithms 

Analysis of Algorithms 

Analysis of Algorithms 
MergeSort 

MERGESORT(l) 

Let us see what happens if we substitute a number for n. 
(1) 
(2) 

if ISEMPTY(l ) 
return l 

T (4) = 

= 

T (3) + Θ(1) 

(T (2) + Θ(1)) + Θ(1) 

(3) 
(4) 
(5) 

if ISSINGLETON(l) 
return l 

return (MERGE( 
= ((T (1) + Θ(1)) + Θ(1)) + Θ(1) (6) MERGESORT(FIRSTHALF(l )), 
= (((Θ(1)) + Θ(1)) + Θ(1)) + Θ(1) (7) MERGESORT(SECONDHALF(l )))) 

= 4Θ(1) 

We see that T (n) = nΘ(1) = Θ(n), meaning that MERGE(l1, l2) for a 
combined length of l1 and l2 of n requires Θ(n) steps. T (n) = 

� 
Θ(1) 

2T (n/2) + Θ(n) 

for n = 1, 
for n > 1. 

= Θ(n ln n) 

Think binary tree... 
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Analysis of Algorithms 

Analysis of Algorithms 
Space Complexity 

Analysis of Algorithms 

Analysis of Algorithms 
Space Complexity: Merge 

MERGE(l1, l2) 
(1) if ISEMPTY(l1) 
(2) return l2 

(3) if ISEMPTY(l2) 
(4) return l1 

(5) if ISLESSEQUAL(FIRST(l1),FIRST(l2))
Similarly to time complexity, we can analyze algorithms in terms of (6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2)))
space requirements. For input size n, S(n) denotes the number of (7) return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2)))) 
memory locations we need. 

1. Arguments are given by reference. 

Θ(1) for n = 1,
S(n) = 

S(n − 1) + Θ(1) for n > 1. 

S(n) = Θ(n) 
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Analysis of Algorithms 

Analysis of Algorithms 
Space Complexity: Merge 

Analysis of Problems 

Analysis of Problems 

MERGE(l1, l2) 
(1) if ISEMPTY(l1) 
(2) return l2 

(3) if ISEMPTY(l2) 
(4) return l1	 The complexity of a problem can be described in terms of the time and 
(5) if ISLESSEQUAL(FIRST(l1),FIRST(l2))	 space complexity of the algorithms that solve the problem. 
(6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2))) 
(7)	 return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2)))) An important property of an algorithm is the worst case time 

expenditure for a given problem size, i.e., the maximum time the 
algorithm takes over all problems of at most a given size. 

2. Arguments are given by value (copied). 

Θ(1)	 for n = 1,
S(n) = 

S(n − 1) + Θ(n) + Θ(1) for n > 1. 
n 
i =1 i = n(n + 1)/2 S(n) = Θ(n2)⇒

What does that do to T (n)? 
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Analysis of Problems P and NP 

Analysis of Problems 
Relational View 

Analysis of Problems P and NP 

Analysis of Problems 

Example 

R
(l , ls ) R ls l . 

Example 

I – n ×m M 

S {1,2 n} 

(M , C) ∈ R ⊆ I × S � 

i =C 

M [i , j ] > 0 

j 1, 2 m}. 

R ⊆ I × S χR of R is 
|x | x ∈ I. 

R ⊆ I × S y ∈ R(x ) 
R(x ∅ |x | x ∈ I. 

I 
S 

Binary relation Sorted on the set of finite lists of numbers. 
is in Sorted if and only if is the sorted version of 

matrices 

– 2 ,...,

Cover if and only if 

for all ∈ { , . . . ,

Definition (NP­Relation) 
is an NP­relation if the characteristic function 

computable in polynomial time in for all 

Definition (P­Relation) 

An NP relation is an P­relation if we can compute 
or determine that ) = in polynomial time in for all 

Problems as NP­relations 

– problem instances 

– solutions 

P­relations are problems that are solvable in polynomial time, 
NP­relations are problems that are checkable in polynomial time. 

23 / 43 24 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 



Analysis of Problems P and NP 

Analysis of Problems 
Big Question 

Analysis of Problems P and NP 

Analysis of Problems 
Sat 

BIG Question 

P = NP? 

Not conclusively answered, although most believe it not true. 

Example (SAT) 
Let V be a finite set of boolean variables, and let a literal be a boolean 
variable or its negation. Further let a be a set of literals. A clause is 
satisfied by a variable value assignment (setting) if at least one of the 
literals evaluates to true. If we let 

I = 2C − ∅, where C is the set of all clauses over V , 
S be the set of all variable value assignments, and 

R ⊆ I × S such that R(x ) is the set of all variable value 
assignments such that all clauses in x are satisfied. 

Then R is the SAT NP­relation. 
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Analysis of Problems P and NP 

Analysis of Problems 
Reductions 

Analysis of Problems P and NP 

Analysis of Problems 
Reductions 

Let R1 and R2 be two NP­relations. We define a reduction from R1 to 
R2 as a tuple of functions (f , g) such that 

(x , g(x , y )) ∈ R1 ⇐⇒ (f (x ), y ) ∈ R2. 

We write R1 ≤ R2. 

f //x f (x ) 

Example 

Rsort is R2 

Rmax is R1 

Let f (x ) = x , and g(x , y ) = last(y ), then 
max(x ) = g(x , sort(x )) = last(sort(x )). We have that Rmax ≤ Rsort. AR2 

��
g(x , y ) oo y 

g 

AR1 
(x ) = g(x , AR2 

(f (x ))) 
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Analysis of Problems 
NP­Completeness 

Analysis of Problems P and NP 

Analysis of Problems 
NP­Completeness 

Definition (Polynomial time reduction) 
If f and g are both computable in polynomial time, we call a reduction 
(f , g) a polynomial time reduction, and use R1 ≤p R2 to indicate that 
we have a polynomial time reduction from R1 to R2. 

Definition (NP­Complete NP­relation) 

If R ≥p R� for all NP­relations R�, then R is NP­Hard. If R is an 
NP­relation, R is NP­Complete. 

Transitivity of reductions 

Note that ≤p is transitive. 

This means: reduction to one NP­complete relation is enough. 

Cook’s Theorem 

Need a seed: Satisfiability is NP­complete (Cook 1971) 

NP­Complete NP­relations are the “hardest” NP­relations.
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Analysis of Problems P and NP 

Analysis of Problems 
NP Completeness of 3­Sat 

Analysis of Problems Optimization Problems 

Analysis of Problems 
Optimization problems 

Example (3­SAT) 
3­SAT is the SAT problem where clauses are restricted to be of 
cardinality 3. 

Theorem (3­SAT is NP­complete) 
3­SAT is NP­complete. 

Proof. 
Each c = {z1, . . . , zk } is transformed as (using fresh y ): 

c ⇒ 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 

{{z1, y1, y2}, {z1, y 1, y2}, {z1, y1, y 2}, {z1, y 1, y 2}} if k = 1 

{{z1, z2, y }, {z1, z2, y }} if k = 2 

c if k = 3 

{z1, z2, y } ∪ {{yi , zi+2, y i+1}|1 ≤ i ≤ k − 4} ∪ {y k −3, zk −1, zk } if k > 3 
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Definition (Optimization problem) 

An optimization problem is a three tuple (R, m, �), where 

R ⊆ I × S, I are instances, S are solutions, 
m is a function m : R → N, 
� is an element of {≤,≥}. 

Definition 

For an optimization problem (R, m, �), the set R(x ) is the set of feasible 
solutions for the instance x , m(x , y ) is the measure of solution y of 
instance x , m∗(x ) = z such that z = m(x , y ) for some y ∈ R(x ) and 
z � m(x , y �) for all y � ∈ R(x ). Also, y (x ) = {y ∈ R(x )|m(x , y ) = m∗(x )}. 
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Analysis of Problems 
NPO problems 

Analysis of Problems Optimization Problems 

Analysis of Problems 
Vertex Cover 

This means that m∗(x ) is the optimal measure for problem instance x , 
and y (x ) is the set of optimal solutions for problem instance x . Also, � 
is called the goal, and the problem is a minimization problem if � =≤, 
and a maximization problem if � =≥. 

(R, m )
Rn = {(x , y ) ∈ R|m(x , y ) � n} m 

Definition (NP­Optimization (NPO) Problem) 

An optimization problem , � is an NPO problem if 
is an NP­relation, and is computable 

in polynomial time. 

V 

I G V �, E ) V � ⊆ V 
E ⊆ V � × V �, 
S = 2V 

R ⊆ I × S S ∈ R(x ) (u, v ) ∈ E 
S u, v } �= ∅, 

Then (R, m(S |S|,≤)

Example (Vertex Cover) 

If we let be a universe of vertices 

be the set of all graphs = ( , where , and 

, and 

such that is such that for all , we 
have that ∩ {

) = is the Vertex Cover minimization problem. 
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Analysis of Problems Optimization Problems 

Analysis of Problems 
NP­hard NPO problems 

Analysis of Problems Optimization Problems 

Analysis of Problems 
Vertex Cover is NP­hard 

(R, m ) is NP­hard if Rn 

A (R, m )
y ∈ Rn(x ) Rn(x ∅ 
m∗(x ) > n then Rn (x ∅ y ∈ y (x )
if (R, m )

= P

Theorem 

Proof. 

U = {a, b, c, d }, 
C = {{a, c, d }, {a, b, d }} C is 

G 

K = |U| + 2 ∗ |C| =

Definition (NP­hard NPO problem) 

An NPO problem , � is NP­complete. 

If we could find a polynomial time algorithm for , � , we can find 
or determine that ) = in polynomial time as follows: if 

) = , otherwise return . This means that 
, � is NP­hard, a polynomial time algorithm for this problem 

would mean NP . Hence, it is believed that there exist no 
polynomial time algorithm for NP­hard NPO problems. 

Vertex Cover is NP­hard 

Reduction from 3­SAT: 

satisfiable if and only if in figure 
has a vertex cover of size 

8 or less 
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Let (R, m ) x and y ∈ R(x ), 
of y x as 

RR (x , y max 

� 
mR (x , y ) 
m∗ 

R (x ) 
, 

m∗ 
R (x ) 

mR (x , y ) 

� 

. 

A (R, mR , ∗)
r (n) RR (x ,A(x )) ≤ r (|x |) x . 
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G V , E ) V � ⊆ V 
(u, v ) ∈ E V u, v } �= ∅. 
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V , E ) 
repeat 

(u, v ) ∈ E 
V � ← V � u, v }

E e v or u 
until E = ∅
return V � 
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Proof 

V , E ) 

V , E ) 
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Analysis of Problems 
Approximation properties 

Definition (Performance ratio) 

, � be an NPO problem. Given an instance 
we define the performance ratio with respect to 

) =

Definition (r­approximation algorithm) 

We say that a polynomial time algorithm for problem is an 
­approximation algorithm if for all instances 
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Analysis of Problems Approximation properties 

Analysis of Problems 
Vertex Cover Example 

Example (Vertex Cover) 

Graph = ( . Find minimum cardinality such that for all 
, we have that ∩ {
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Analysis of Problems Approximation properties 

Analysis of Problems 
Vertex Cover Example 

Example (Vertex Cover) 
VC(

choose any edge 
∪ {

remove from any incident to either 

Claim: VC is a 2­approximation algorithm. 
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Analysis of Problems Approximation properties 

Analysis of Problems 
Vertex Cover Example 

Remove all edges except those in VC(

You need at least half of the vertices in VC(
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Analysis of Problems 
Good and Bad News 

Analysis of Problems Approximation properties 

Analysis of Problems 
Good and bad problems 

r 

r � P 
(typically P =P=NP). 

r p(|x |)p�(1/(1 − r )) 

R(x ) 

{0, 1}

Good News 

Existence of ­approximation algorithm 

Bad News 

Proof of non­existence of ­approximation algorithm, unless 

Good problems 

FPTAS ­approximation possible in time. Example: 
Maximum Knapsack. 

Bad Problems 

Problems where deciding whether is empty or not is NP­hard. 
Examples: Max(min)imum Weighted Satisfiability, Minumum 

­integer programming. 
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Analysis of Problems Approximation properties 

Analysis of Problems 
Prediction of hardness 

Results given so far are worst case analysis results. 
non­randomness of instance hardness? 

Analysis of randomized instances by statistical mechanics and phase 
transitions between regions of hard and not­so­hard instances. 
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