
Harvard-MIT Division of Health Sciences and Technology
HST.951J: Medical Decision Support, Fall 2005
Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

Analysis
Algorithmic Complexity and Application to Problem

Staal A. Vinterbo

Motivation

Problem

We have a new sequence of nucleotides. Which of the ones we
already have does it match the best?

How do we address this problem?

Harvard­MIT Division of Health Science and Technology Has it been solved?

Is there a problem that is close enough such that we can use it to
obtain a solution?

Decision Systems Group, BWH

Harvard Medical School
Is the problem feasible?

Nov 2005: HST 951/MIT 6.873 Class
 How feasible?

1 / 43 2 / 43

Introduction

Introduction

Introduction

Introduction

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Algorithms and Computational Model Computational Model

Example

Definition (Program)
A finite sequence of computational instructions.

Definition (Computational Model)
The abstract representation of a device that can execute programs.

Definition (Algorithm)
An program for the solution of a particular problem.

Convenient: present programs in a “Pascal” like language.

An abstract “Pascal” machine, composed by a control and processing
unit able to execute “Pascal” statements, and a set of memory
locations identified by all variable and constant identifiers defined in
the algorithm.

3 / 43 4 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Introduction

Introduction

Introduction

Introduction
Computational Model: Algorithm Example Computational Model Cost

Example

(x , y)
(1) r ← 1
(2) while y �= 0
(3) r ← r ∗ x
(4) y ← y − 1
(5) return r

EXP Uniform Cost
We also assume that all memory locations have the same size, and
that all values involved in the computation are not larger than that they
can be stored in a memory location.

5 / 43 6 / 43

Introduction

Introduction

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Computational Model: Example

Preliminaries

Preliminaries
What quantities for Algorithms?

Example

(x , y)
+ 3y .

Example

a ← 5 + v

+ log |v |

1

2

Our program EXP

has cost 2

Alternative: logarithmic cost:

has a cost proportional with the sum of logarithms of values involved:

log 5

We need to decide
Execution cost

computational steps: the “dominant” operation
memory used

Input size, which characteristic parameter describing the input is it
whose growth towards infinity gives asymptotic computation cost.

7 / 43 8 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Preliminaries

Preliminaries
Big O Notation

Preliminaries

Preliminaries
Big O Notation

O(g(n)) = {f (n) there exists c > 0 and n0 > 0 s.t. |
0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

o(g(n)) = {f (n) for any c > 0 there exists n0 > 0 s.t. |
0 ≤ f (n) < cg(n) for all n ≥ n0}

Ω(g(n)) = {f (n) there exists c > 0 and n0 > 0 s.t. |
0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

O(g(n)) – the set of functions that are asymptotically bounded
from above by g.
Ω(g(n)) – the set of functions that are asymptotically bounded
from below by g.

Example

x 2 − x ?

x 2 − x ≤ x 2 x0 > 0 ⇒ x 2 − x ∈ O(x 2)

cx 2 ≤ x 2 − x ⇒

c ≤
x 2 − x

x 2 = 1 −
1
x

x →∞→ 1 ⇒

cx 2 ≤ x 2 − x c = 1/ x0 = 2 ⇒

x 2 − x ∈ Ω(x 2)

What is

for

for 2 and

9 / 43 10 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Preliminaries

Preliminaries
Big O Notation

Preliminaries

Preliminaries
Big O Notation

Example

x 2 − x x 2 x 2/2.

x

Θ(g(n)) g tight

Black – , blue – , red –

We had that

The set is then the set of functions for which is a
asymptotic bound.

2 − x ∈ O(x 2) ∩ Ω(x 2). In general

Θ(g(n)) = O(g(n)) ∩ Ω(g(n)).

o(g(n)) – the set of functions for which g is a lower bound that is
not tight.

11 / 43 12 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

� �

Boundedness

Preliminaries

Preliminaries

Preliminaries

Preliminaries
Other Useful Equalities

Further we say that a function f is polynomially bounded if

f (n) ∈ O(nk) = nO(1) Using Stirling’s approximation we have that

for some constant k , and we say that f is polylogarithmically bounded if n! = o(nn)

ln(n!) = Θ(n ln n).
f (n) ∈ O((ln n)k) = lnO(1) n

We further have that
for some constant k . As we have that

k nO(1) ⊆ O((ln n)k)) ⊆ O(n) ⊆ O(2k) ⊆ O(n!) ⊆ O(n)
(ln n)a ∈ o(nk)

for some constant k > 0.
for any constant k > 0, we have that polylogarithmically bounded
functions grow slower than polynomial functions.

13 / 43 14 / 43

Merge Merge

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Algorithms

Analysis of Algorithms

Analysis of Algorithms

Analysis of Algorithms

MERGE(l1, l2)
(1) if ISEMPTY(l1)

Merge two sorted list l1 and l2 into a single sorted list. MERGE(l1, l2) (2) return l2

(1) if ISEMPTY(l1) (3) if ISEMPTY(l2)
(2) return l2

(4) return l1

(3) if ISEMPTY(l2) (5) if ISLESSEQUAL(FIRST(l1),FIRST(l2))
(6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2)))(4) return l1 (7) return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2))))

(5) if ISLESSEQUAL(FIRST(l1),FIRST(l2))
(6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2)))
(7) return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2)))) |l1 + |l2| = n, T (n) – number of steps needed to merge. |

n = 1: all we have to do is return non­empty list, T (1) = Θ(1).We assume that all these functions can be done in a constant number
n = 1: Θ(1) + T (n − 1)of computational steps, i.e., Θ(1) steps.

Θ(1) for n = 1,
T (n) =

T (n − 1) + Θ(1) for n > 1.

15 / 43 16 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

�

Merge

Analysis of Algorithms

Analysis of Algorithms

Analysis of Algorithms

Analysis of Algorithms
MergeSort

MERGESORT(l)

Let us see what happens if we substitute a number for n.
(1)
(2)

if ISEMPTY(l)
return l

T (4) =

=

T (3) + Θ(1)

(T (2) + Θ(1)) + Θ(1)

(3)
(4)
(5)

if ISSINGLETON(l)
return l

return (MERGE(
= ((T (1) + Θ(1)) + Θ(1)) + Θ(1) (6) MERGESORT(FIRSTHALF(l)),
= (((Θ(1)) + Θ(1)) + Θ(1)) + Θ(1) (7) MERGESORT(SECONDHALF(l))))

= 4Θ(1)

We see that T (n) = nΘ(1) = Θ(n), meaning that MERGE(l1, l2) for a
combined length of l1 and l2 of n requires Θ(n) steps. T (n) =

�
Θ(1)

2T (n/2) + Θ(n)

for n = 1,
for n > 1.

= Θ(n ln n)

Think binary tree...
17 / 43 18 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Algorithms

Analysis of Algorithms
Space Complexity

Analysis of Algorithms

Analysis of Algorithms
Space Complexity: Merge

MERGE(l1, l2)
(1) if ISEMPTY(l1)
(2) return l2

(3) if ISEMPTY(l2)
(4) return l1

(5) if ISLESSEQUAL(FIRST(l1),FIRST(l2))
Similarly to time complexity, we can analyze algorithms in terms of (6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2)))
space requirements. For input size n, S(n) denotes the number of (7) return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2))))
memory locations we need.

1. Arguments are given by reference.

Θ(1) for n = 1,
S(n) =

S(n − 1) + Θ(1) for n > 1.

S(n) = Θ(n)

19 / 43 20 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

�

�

Analysis of Algorithms

Analysis of Algorithms
Space Complexity: Merge

Analysis of Problems

Analysis of Problems

MERGE(l1, l2)
(1) if ISEMPTY(l1)
(2) return l2

(3) if ISEMPTY(l2)
(4) return l1	 The complexity of a problem can be described in terms of the time and
(5) if ISLESSEQUAL(FIRST(l1),FIRST(l2))	 space complexity of the algorithms that solve the problem.
(6) return (APPEND(LIST(FIRST(l1)),MERGE(REST(l1),l2)))
(7)	 return (APPEND(LIST(FIRST(l2)),MERGE(l1,REST(l2)))) An important property of an algorithm is the worst case time

expenditure for a given problem size, i.e., the maximum time the
algorithm takes over all problems of at most a given size.

2. Arguments are given by value (copied).

Θ(1)	 for n = 1,
S(n) =

S(n − 1) + Θ(n) + Θ(1) for n > 1.
n
i =1 i = n(n + 1)/2 S(n) = Θ(n2)⇒

What does that do to T (n)?
21 / 43 22 / 43

NP­Relations

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems P and NP

Analysis of Problems
Relational View

Analysis of Problems P and NP

Analysis of Problems

Example

R
(l , ls) R ls l .

Example

I – n ×m M

S {1,2 n}

(M , C) ∈ R ⊆ I × S �

i =C

M [i , j] > 0

j 1, 2 m}.

R ⊆ I × S χR of R is
|x | x ∈ I.

R ⊆ I × S y ∈ R(x)
R(x ∅ |x | x ∈ I.

I
S

Binary relation Sorted on the set of finite lists of numbers.
is in Sorted if and only if is the sorted version of

matrices

– 2 ,...,

Cover if and only if

for all ∈ { , . . . ,

Definition (NP­Relation)
is an NP­relation if the characteristic function

computable in polynomial time in for all

Definition (P­Relation)

An NP relation is an P­relation if we can compute
or determine that) = in polynomial time in for all

Problems as NP­relations

– problem instances

– solutions

P­relations are problems that are solvable in polynomial time,
NP­relations are problems that are checkable in polynomial time.

23 / 43 24 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems P and NP

Analysis of Problems
Big Question

Analysis of Problems P and NP

Analysis of Problems
Sat

BIG Question

P = NP?

Not conclusively answered, although most believe it not true.

Example (SAT)
Let V be a finite set of boolean variables, and let a literal be a boolean
variable or its negation. Further let a be a set of literals. A clause is
satisfied by a variable value assignment (setting) if at least one of the
literals evaluates to true. If we let

I = 2C − ∅, where C is the set of all clauses over V ,
S be the set of all variable value assignments, and

R ⊆ I × S such that R(x) is the set of all variable value
assignments such that all clauses in x are satisfied.

Then R is the SAT NP­relation.

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 25 / 43 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 26 / 43

Analysis of Problems P and NP

Analysis of Problems
Reductions

Analysis of Problems P and NP

Analysis of Problems
Reductions

Let R1 and R2 be two NP­relations. We define a reduction from R1 to
R2 as a tuple of functions (f , g) such that

(x , g(x , y)) ∈ R1 ⇐⇒ (f (x), y) ∈ R2.

We write R1 ≤ R2.

f //x f (x)

Example

Rsort is R2

Rmax is R1

Let f (x) = x , and g(x , y) = last(y), then
max(x) = g(x , sort(x)) = last(sort(x)). We have that Rmax ≤ Rsort. AR2

��
g(x , y) oo y

g

AR1
(x) = g(x , AR2

(f (x)))

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 27 / 43 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 28 / 43

Analysis of Problems P and NP

Analysis of Problems
NP­Completeness

Analysis of Problems P and NP

Analysis of Problems
NP­Completeness

Definition (Polynomial time reduction)
If f and g are both computable in polynomial time, we call a reduction
(f , g) a polynomial time reduction, and use R1 ≤p R2 to indicate that
we have a polynomial time reduction from R1 to R2.

Definition (NP­Complete NP­relation)

If R ≥p R� for all NP­relations R�, then R is NP­Hard. If R is an
NP­relation, R is NP­Complete.

Transitivity of reductions

Note that ≤p is transitive.

This means: reduction to one NP­complete relation is enough.

Cook’s Theorem

Need a seed: Satisfiability is NP­complete (Cook 1971)

NP­Complete NP­relations are the “hardest” NP­relations.

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 29 / 43 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 30 / 43

Analysis of Problems P and NP

Analysis of Problems
NP Completeness of 3­Sat

Analysis of Problems Optimization Problems

Analysis of Problems
Optimization problems

Example (3­SAT)
3­SAT is the SAT problem where clauses are restricted to be of
cardinality 3.

Theorem (3­SAT is NP­complete)
3­SAT is NP­complete.

Proof.
Each c = {z1, . . . , zk } is transformed as (using fresh y):

c ⇒

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩

{{z1, y1, y2}, {z1, y 1, y2}, {z1, y1, y 2}, {z1, y 1, y 2}} if k = 1

{{z1, z2, y }, {z1, z2, y }} if k = 2

c if k = 3

{z1, z2, y } ∪ {{yi , zi+2, y i+1}|1 ≤ i ≤ k − 4} ∪ {y k −3, zk −1, zk } if k > 3

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 31 / 43

Definition (Optimization problem)

An optimization problem is a three tuple (R, m, �), where

R ⊆ I × S, I are instances, S are solutions,
m is a function m : R → N,
� is an element of {≤,≥}.

Definition

For an optimization problem (R, m, �), the set R(x) is the set of feasible
solutions for the instance x , m(x , y) is the measure of solution y of
instance x , m∗(x) = z such that z = m(x , y) for some y ∈ R(x) and
z � m(x , y �) for all y � ∈ R(x). Also, y (x) = {y ∈ R(x)|m(x , y) = m∗(x)}.

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 32 / 43

Analysis of Problems Optimization Problems

Analysis of Problems
NPO problems

Analysis of Problems Optimization Problems

Analysis of Problems
Vertex Cover

This means that m∗(x) is the optimal measure for problem instance x ,
and y (x) is the set of optimal solutions for problem instance x . Also, �
is called the goal, and the problem is a minimization problem if � =≤,
and a maximization problem if � =≥.

(R, m)
Rn = {(x , y) ∈ R|m(x , y) � n} m

Definition (NP­Optimization (NPO) Problem)

An optimization problem , � is an NPO problem if
is an NP­relation, and is computable

in polynomial time.

V

I G V �, E) V � ⊆ V
E ⊆ V � × V �,
S = 2V

R ⊆ I × S S ∈ R(x) (u, v) ∈ E
S u, v } �= ∅,

Then (R, m(S |S|,≤)

Example (Vertex Cover)

If we let be a universe of vertices

be the set of all graphs = (, where , and

, and

such that is such that for all , we
have that ∩ {

) = is the Vertex Cover minimization problem.

33 / 43 34 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems Optimization Problems

Analysis of Problems
NP­hard NPO problems

Analysis of Problems Optimization Problems

Analysis of Problems
Vertex Cover is NP­hard

(R, m) is NP­hard if Rn

A (R, m)
y ∈ Rn(x) Rn(x ∅
m∗(x) > n then Rn (x ∅ y ∈ y (x)
if (R, m)

= P

Theorem

Proof.

U = {a, b, c, d },
C = {{a, c, d }, {a, b, d }} C is

G

K = |U| + 2 ∗ |C| =

Definition (NP­hard NPO problem)

An NPO problem , � is NP­complete.

If we could find a polynomial time algorithm for , � , we can find
or determine that) = in polynomial time as follows: if

) = , otherwise return . This means that
, � is NP­hard, a polynomial time algorithm for this problem

would mean NP . Hence, it is believed that there exist no
polynomial time algorithm for NP­hard NPO problems.

Vertex Cover is NP­hard

Reduction from 3­SAT:

satisfiable if and only if in figure
has a vertex cover of size

8 or less

35 / 43 36 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Let (R, m) x and y ∈ R(x),
of y x as

RR (x , y max

�
mR (x , y)
m∗

R (x)
,

m∗
R (x)

mR (x , y)

�

.

A (R, mR , ∗)
r (n) RR (x ,A(x)) ≤ r (|x |) x .

37 / 43

G V , E) V � ⊆ V
(u, v) ∈ E V u, v } �= ∅.

38 / 43

V , E)
repeat

(u, v) ∈ E
V � ← V � u, v }

E e v or u
until E = ∅
return V �

39 / 43

Proof

V , E)

V , E)

40 / 43

Analysis of Problems Approximation properties

Analysis of Problems
Approximation properties

Definition (Performance ratio)

, � be an NPO problem. Given an instance
we define the performance ratio with respect to

) =

Definition (r­approximation algorithm)

We say that a polynomial time algorithm for problem is an
­approximation algorithm if for all instances

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems Approximation properties

Analysis of Problems
Vertex Cover Example

Example (Vertex Cover)

Graph = (. Find minimum cardinality such that for all
, we have that ∩ {

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems Approximation properties

Analysis of Problems
Vertex Cover Example

Example (Vertex Cover)
VC(

choose any edge
∪ {

remove from any incident to either

Claim: VC is a 2­approximation algorithm.

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems Approximation properties

Analysis of Problems
Vertex Cover Example

Remove all edges except those in VC(

You need at least half of the vertices in VC(

Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems Approximation properties

Analysis of Problems
Good and Bad News

Analysis of Problems Approximation properties

Analysis of Problems
Good and bad problems

r

r � P
(typically P =P=NP).

r p(|x |)p�(1/(1 − r))

R(x)

{0, 1}

Good News

Existence of ­approximation algorithm

Bad News

Proof of non­existence of ­approximation algorithm, unless

Good problems

FPTAS ­approximation possible in time. Example:
Maximum Knapsack.

Bad Problems

Problems where deciding whether is empty or not is NP­hard.
Examples: Max(min)imum Weighted Satisfiability, Minumum

­integer programming.

41 / 43 42 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873 Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems Approximation properties

Analysis of Problems
Prediction of hardness

Results given so far are worst case analysis results.
non­randomness of instance hardness?

Analysis of randomized instances by statistical mechanics and phase
transitions between regions of hard and not­so­hard instances.

43 / 43Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

	Introduction
	Preliminaries
	Analysis of Algorithms
	Analysis of Problems
	P and NP
	Optimization Problems
	Approximation properties

