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Variable Selection


• Use few variables 

• Interpretation is easier




Ranking Variables Univariately


•	 Remove one variable 
from the model at a 
time 

•	 Compare 
performance of [n-1]
model with full [n]
model 

•	 Rank variables 
according to
performance
difference 

Screenshots removed due to copyright reasons.




Figures removed due to copyright reasons. 
Please see: 
Khan, J., et al. "Classification and diagnostic prediction of cancers using gene expression 

profiling and artificial neural networks." Nat Med 7, no. 6 (Jun 2001):  673-9. 



Variable Selection


•	 Ideal: consider all variable combinations


2
– Not feasible in most data sets with large number of n variables: 

n 

•	 Greedy Forward:

–	 Select most important variable as the “first component”, Select 

other variables conditioned on the previous ones 
–	 Stepwise: consider backtracking 

•	 Greedy Backward: 
–	 Start with all variables and remove one at a time. 
–	 Stepwise: consider backtracking 

•	 Other search methods: genetic algorithms that optimize
classification performance and # variables 





Variable compression


•	 Direction of maximum variability 
– PCA  

• PCA regression


– LDA 


– (Partial Least Squares)
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Y Covariance and 
Correlation Matrices 
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Slope from linear regression is asymmetric, 

covariance and ρ are symmetric


β 0 = y − β x y = β + β 1 x
1 0 
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Principal Components Analysis


•	 Our motivation: Reduce the number of variables 
so that we can run interesting algorithms 

•	 The goal is to build linear combinations of the 
variables (transformation vectors) 

•	 First component should represent the direction 
with largest variance 

•	 Second component is orthogonal to 
(independent of) the first, and is the next one
with largest variance 

•	 and so on…




Y 

X and Y are not 
independent 
(covariance is not 0)
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Eigenvalues


I is the identity matrix.

A is a square matrix (such as the covariance matrix).


|A - λ I| = 0 


λ is called the eigenvalue (or characteristic root) of A.
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Eigenvectors
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q and m are eigenvalues 

[a b]T and [c d]T are eigenvectors, they are orthogonal 
(independent of each other, do not contain redundant information) 

The eigenvector associated with the largest eigenvalue will point in 
the direction of largest variance in the data. 

If q > m, then [a b]T is PC1 



Principal Components
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Total variance is 21.65 + 1.27 = 22.92 
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Transformed data

O1 O2 O3
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Total variance is 22.92


Variance of PC1 is 22.87, so it captures 99% of the variance.


PC2 can be discarded with little loss of information.
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PC1 is not at the regression line

PC 

Reg 
•	 y=4x Y 

• [a b]T = [0.23 0.97] 
•	 Transformation is 

0.23x+0.97y 
•	 PC1 goes thru 

(0,0) and (0.23,0.97) 
•	 Its slope is 

–	0.97/0.23 = 4.217 

0	 X 



PCA regression


•	 Reduce original 
dimensionality n (number of
variables) finding n PCs, such
that n<d 

•	 Perform regression on PCs

•	 Problem: Direction of greater 

overall variance is not 
necessarily best for
classification 

•	 Solution: Consider also 
direction of greater separation
between two classes 



(not so good) idea: 

Class mean separation


•	 Find means of each 
category 

•	 Draw the line that passes 
through the 2 means 

•	 Project points on the line

(a.k.a. orthogonalize points with 

respect to the line) 
•	 Find point that best 

separates data 



Fisher’s Linear Discriminant


•	 Use classes to define discrimination line, 
but criterion to maximize is: 
– ratio of (between classes variation) and 

(within classes variation) 
•	 Project all objects into the line


•	 Find point in the line that best separates 
classes 



Sw is the sum of scatters
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Sb is scatter between the classes


TSb = (μ − μ )(μ − μ )1 2 1 2 

•	 Maximize Sb/Sw (a square d x d matrix,
where d is the number of dimensions) 

•	 Find maximum eigenvalue and respective 
eigenvector 

•	 This is the direction that maximizes Fisher’s 
criterion 

•	 Points are projected over this line 
•	 Calculate distance from every projected point 

to projected class means and decide class 
corresponding to smaller distance 

•	 Assumption: class distributions are normal 

Eigenvector with 

max eigenvalue




Classification Models


•	 Quadratic Discriminant Analysis

•	 Partial Least Squares 

–	 PCA uses X to calculate directions of greater 
variation 

– PLS uses X and Y to calculate these directions

•	 It is a variation of multiple linear regression 

PCA maximizes Var(Xα), 

PLS maximizes Corr2(y,Xα)Var(Xα)


•	 Logistic Regression




PCA, PLS, Selection


•	 3 data sets

–	 Singh et al. (Cancer Cell, 2002: 52 cases of benign and 


malignant prostate tumors)

–	 Bhattachajee et al. (PNAS, 2001: 186 cases of different types of 

lung cancer) 
–	 Golub et al. (Science, 1999: 72 cases of acute myeloblastic and 

lymphoblastic leukemia) 

•	 PCA logistic regression 
• PLS  
•	 Forward selection logistic regression


•	 5-fold cross-validation 



Screenshots removed due to copyright reasons.


Missing Values: 0.001% -
0.02%















Classification of Leukemia with Gene Expression


PCA 

Variable 
Selection 

Variable selection from ~2,300 genes





