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Introduction 

•There is an increasingly large amount of gene expression data; other 
types of genomic data, e.g., single nucleotide polymorphisms, are 
accumulating rapidly. 

•A large amount of phenotypic data exists as well, especially in clinical 
setting, e.g., diagnosis, age, gender, race, survival time, smoking history, 
clinical stage of tumor, size of tumor, type of tumor, treatment 
parameters. 

•We need to find relationships between genomic and phenotypic 
data. What genes or variables are correlated with a particular 
phenotype? What should we use as predictors? 



Introduction 

•We need to correlate predictor variables with response variables. A 
classic example: is smoking related to lung cancer? 

•The one of the difficulties with genomic data is that there are many 
possible predictors 

•Eventually, we would like to have a comprehensive and coherent 
statistical framework for relating different types of predictors with 
outcome variables. 

•Today: we will use micro-array data as an example. 



Overview 

•Microarrays have become an essential tool 
•cDNA arrays - basic biology labs with their own arrays 
(competitive hybridization – measures ratio between the sample of 
interest and the reference sample) 
•Oligonucleotide arrays (Affymetrix) – everyone else 

(attempts to measure absolute abundance level) 
•There are few other types (SAGE, commercial arrays) 

•Biological validation is necessary 
•northern blots; RT-PCR; RNAi 

•A crude analysis may be sufficient for finding prominent features in 
the data, e.g., genes with very large fold ratios 

•More sophisticated analysis is important for getting the most 
out of your data 



An Observation 

•There is a disconnect between statisticians/mathematicians/ computer 
scientists who invent techniques and biologists/ clinicians who use them. 

•There have been numerous models for describing microarray data, but 
most of them are not used in practice. 

•Biologists/clinicians are justifiably reluctant in applying method they do 
not understand. 

•Trade-off between complexity and adoptability 



Useful Techniques 

Dimensionality Reduction 
•Principal components analysis 
•Singular value decomposition 

Discrimination and Classification 
•Binary and discrete response variable 
•Continuous response variable 
•Parametric vs. nonparametric tests 
•Partial least squares 

Censored Data 
•Kaplan-Meier estimator

•Cox’s proportional hazards model 

•Generalized linear models 




Statistical challenges 

•People have been studying the relationship between predictors and 
responses for a long time. So what’s new? 

p observations 
p observations 

n variables 

n variables 

•The usual paradigm in a clinical study is having few variables and 
many samples 

•Many statistical methods may not be valid without 
modifications; methods need to be applied with caution 



Too many variables (genes) 

Underdetermined system: 
e.g. fitting a cubic polynomial through two points 

Multivariate normal distribution: 

But the covariance matrix is singular!




Statistical challenges 

•One example: we need to be careful with P-values 

•Suppose you flip a coin 10 times and get all heads. Is it 
biased? What if there are 10,000 people flipping coins 

and one person gets 10 heads? 

•Even if the null hypothesis is true, 500 out of 10000 genes will be 
significant at .05 level by chance. 

•We are testing 10,000 hypotheses at the same time; need to 
perform “Multiple-testing adjustment” 



Dimensionality Reduction 

•There are too many genes in the expression data 

•“Feature selection” in computer science 

•Filter genes 
•software built-in filters 
•threshold value for minimum expression 
•variational filtering 
•use information from replicates 

•Principal components 

•Singular value decomposition 

•Multi-dimensional scaling 



Principal Component Analysis 

We want to describe the covariance structure of a set of 
variables through a few linear combinations of 

these variables. 

Geometrically, principal components represent a new 
coordinate system, with axes in the directions with 
maximum variability. 

Provides a more parsimonious description 
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We want maximum variance and orthogonality: 
eigenvectors!8 



Principal Component Analysis 

•Identify directions with greatest variation. 

•Linear combinations are given by eigenvectors of the covariance 
matrix. 

•Eigenvectors and eigenvalues. 

•Total variation explained is related to the eigen values. 
Proportion of total variance due to the Kth component. 

•Reduces data volumne by projecting into lower dimensions 

•Can be applied to rows or columns. 



Singular Value Decomposition 

SVD is a matrix factorization that reveals many important properties of a 
matrix. 

U, V are orthonormal; D is diagonal 

Let ui be the ith column of U. Then the best vector that captures the 
column space of A is u1; the best two column vectors that capture the 
columns of A are u1 and u2, etc. 

These vectors show the dominant underlying behavior. 

In PCA, the factorization is applied to the covariance matrix rather than 
the data matrix itself. 



Classification 

•Binary classification problem using gene expression data has been 
studied extensively. 

normal vs. cancer 

genes 

Typical Questions: 

What genes best discriminate 
the two classes? 

Can we divide the samples 
correctly into two 

classes if the labels were 
unknown? 

Can we make accurate 
predictions on new 

samples? 

Are the unknown subclasses? 



Discrimination: Variable Selection by T-test 

Are the means in the two populations significantly different? 
(two independent sample case) 

normal 
follows a t-distribution 

Requires normality! 
Otherwise p-values can be 

misleading! 

distribution 

t-distribution 



Variable selection: Wilcoxon Test 
•Nonparametric or “distribution-free” test 

Actual value: 26 28 52 70 77 80 115 130 141 170


rank: 1 2 3 4 5 6 7 8 9 10


Under H0: 

2+3+4+6+9 
=24 

1+5+7+8+10 
=31 

p=.547




An aside: hypothesis testing 
•The usual form of a hypothesis testing is 

•For large samples, this often converges to N(0,1) 
under the null hypothesis. 



Parametric vs. Nonparametric Tests 

Parametric tests assume certain distributions. (they may be robust to 
deviations from Gaussian distributions if the samples are very large.) 

Example: t-test assumes normality in the data 

Nonparametric tests do not make such assumptions; it is more 
robust to outliers in the data. 

Example: Wilcoxon rank-sum test 

When the distributional assumptions holds, parametric tests have 
higher power; if the assumption do not hold, the tests are invalid. 
(power of a test: rejecting the null hypothesis when a specific alternative 
hypothesis is true.) 

Question: Then, why don’t we always use nonparametric 
methods? 



Popular classification methods 

•Computer scientists: decision boundary, classifiers, feature selection, 
supervised learning 

•Statisticians: Fisher linear discriminant, discriminant analysis 

•Logistic regression 


•Variable subset selection 


•Classification trees (CART) 


•Neural networks 


•Support vector machines


misclassified regions 

classify as group 1 classify as group 2 

group 1 group 2 

Goal: minimize misclassification rate 



Multiclass classification 

See Yeoh, et al. Classification, subtype discovery, and prediction of outcome in 
pediatric acute lymphoblastic leukemia by gene expression profiling, Cancer Cell 
1(2):133-143, 2002 



Classification: Remarks 

•Binary classification has been studied extensively. (A popular data 
set: leukemia data set from Whitehead) 

•Multiclass classification has received more attention 
recently, but more to be done. (e.g., Ramaswamy, et al. 
PNAS 98:15149, Bhattacharjee, et al. PNAS 98:13790) 

•Use of other types of response variables has much to be 
done. 

•Clustering (no class labels) or “unsupervised learning” has also 
been studied extensively. (A popular data set: yeast 

experiments from Stanford) 



Phenotype in many forms 

•Your analysis depends on the type of phenotypic data you 
have. 

•binary (disease vs. normal) 
•discrete 

•non-ordered (multiple subclasses) 
•ordered (a rating for a severity of disease) 

•continuous (measure of invasive ability of cells) 
•censored (patient survival time) 

•Many phenotypes can be reduced to the binary type, but 
you lose a lot of information this way! 



Using patient survival times 

•Patient survival times are often censored. 
–a study is terminated before patients die 
–a patient drops out of a study 
–(left-censoring) a patient with a disease joins a study; we don’t know 

when the disease first occurred 
–we assume “non-informative censoring.” 

•If we exclude these patients from the study or treat them as 
uncensored, we obtain substantially biased results 

•The phenotype can denote time to some specific event, e.g., 
reoccurrence of a tumor. 



Previous Studies 

See Alizadeh et al, Nature, 2000




Survival Analysis: Basics


•Let the failure times: T1,T2,…,Tn are iid, ~F(t) 


•We are interested in estimating the survival function 

• S(t) = 1-F(t) = P(T>t) 


•It is convenient to work with a hazard function h(t). 


•h(t) is the probability of failing before t+∆t, having survived up to time t. 


•h(t) = f(t)/S(t) 


•We would like to estimate S(t) accurately, accounting for the censoring in the data




Survival Analysis: Parametric modeling 

In a parametric model, we specify the form of S(t) or 
h(t). In the simplest case, we can assume that the hazard function is 
constant, h(t)=λ. This means F(t) follows an exponential 
distribution, F(t)=1-exp(-λt) 

Then we can solve for the parameter λ using a 
likelihood approach: 

We can construct likelihood functions and carry out inference 



Survival Analysis: Kaplan-Meier Estimator


Data: 2,2,3+,5,5+,7,9,16,16,18+


vj Nj dj 1-dj/Nj S(t)=P(T>vj) 

2 10 2 8/10 .8 

5 7 1 6/7 .69 

7 5 1 4/5 .55 

9 4 1 3/4 .41 

16 3 2 1/3 .14




Cox’s Proportional Hazards Model 

•The most common approach: assume that the hazard is proportional 
between the two groups 

•‘semi-parametric’ approach 
h(t) = h0(t) exp (β’x) 

probability of failure 

time 

patients on treatment 1 

patients on treatment 2 

We compute β and see if it is significant.




Putting it together: Example 

Bhattacharjee, et al. Classification of human lung carcinomas by mRNA 
expression profiling reveals distinct adenocarcinoma subclasses, PNAS 
98:13790–13795, 2001. 

Total of 186 lung carcinoma 
and 17 normal specimens. Patient Survival Censor 

1 25.1 1 
125 adenocarcinoma 2 62.6 0 
samples were associated 3 7.3 1 
with clinical data and with 4 22.3 1 

histological slides from 5 41.2 1 
6 66.8 1adjacent sections. 7 75.4 0 
8 50.1 0

The authors reduced the data 9 60.5 0
to few hundred reliably 
measured genes (using 
replicates). 



The Question 

•Another way to deal with the censoring: turn survival times into 
a binary indicator, e.g., 5-year survival rate. Æ loss of 
information 

•Question: Can we directly find genes or linear combinations of 
genes that are highly correlated with the survival times? 

•For example, (gene A + .5 * gene B + 2 * gene C) may be 
highly predictive of the survival time. 

•We use the survival times directly to find good predictors. 



The Big Picture: 

Gene expression 

? 

Phenotypic Data 



Partial Least Squares 

•Problem with dimension reduction using Principal Component 
Analysis: it only looks at the predictor space. 

•Ordinary least squares does not consider the variability in the 
predictor space. 

•Partial least squares is a compromise between the two. It attempts to 
find orthogonal linear combinations that explain the variability in the 
predictor space while being highly correlated with the response 
variable. 

•Main advantage: it can handle a large number of variables (more 
variables than cases) and it is fast! 



Partial Least Square (cont’d) 

Response vector y (n x 1); covariate matrix X (n x p). yMotivation: there are 
‘latent’ variables, t1,… ts that explain both the response and covariate space: 

pi and qi are suitably chosen weights. 


We want Es and ys to be small compared to the systematic parts explained by 

ti. 



Partial Least Square (cont’d) 

•Principal components analysis is based on the spectral decomposition of X’X; 
partial least squares is based on the decomposition of X’y, thus reflecting the 
covariance structure between the predictors and the response. 

•Once latent variables are recovered, a regular linear regression model can be 
fit with latent variables. 

•There are several versions of this algorithm. We use one iteratively re-
weighted version. 

•The algorithm is nonlinear; convergence properties are hard to understand. It 
is fast, as it involves no matrix decompositions. 



The Big Picture: (a compromise between PCA 
& least squares 

Gene expression Collinearity Partial Least output; ‘latent 
variables’) 

(too many variables) Squares 

? 

Phenotypic Data Censoring 



Reformulation as a Poisson Regression 

•We would like to apply Partial Least Square to the 
censored problem. 

•There is a way to transform the censored problem into a 
Poisson regression problem that has no censoring! 

•We can show that the likelihood function from the 
new problem is the same as the one from the Cox proportional hazards 
model. 

•Computationally more expensive, but we can do it. 
Partial least squares iteration is very fast (involves no matrix 
decompositions) 



Poisson Regression 

•Linear regression (continuous response): 

•Generalized Linear Models (GLM): the response 
variable can follow different distributions. 

•Logistic regression: (binary data) 

•Poisson regression: (count data) 

•We usually use the Newton-Raphson or Fisher Scoring method on the 
log likelihood to solve for the parameters. 



Conclusions 

•We need new methods for finding relationships 
between genotypic and phenotypic data 

•Some basic techniques for microarray data 
•Dimensionality reduction 
•Basic classification techniques 

•One example: dealing with patient survival data 
•Cox’s proportional hazards model 
•Poisson regression and generalized linear models 
•Partial least squares 

•We need a coherent statistical framework for dealing with a 
large amount of various types of data 




