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Notes for Recitation 1 

1 Logic 

How can one discuss mathematics with logical precision, when the English language is itself 
riddled with ambiguities? For example, imagine that you ask a friend what kind of dessert 
was offered at the party you couldn’t make it to last week, and your friend says, 

You could have cake or ice cream. 

Does this mean that you could have both cake and ice cream? Or does it mean you had to 
choose either one or the other? 

To cope with such ambiguities, mathematicians have defined precise meanings for some 
key words and phrases. Furthermore, they have devised symbols to represent those words. 
For example, if P is a proposition, then “not P ” is a new proposition that is true whenever 
P is false and vice versa. The symbolic representation for “not P ” is P or P .¬

Two propositions, P and Q, can be joined by “and”, “or”, “implies”, or “if and only if” 
to form a new proposition. The truth of this new proposition is determined by the truth of 
P and Q according to the table below. Symbolic equivalents are given in parentheses. 

“P implies Q” or “P if and only if Q” or 
“P and Q” “P or Q” “if P , then Q” “P iff Q” 

P 
F 

Q 
F 

(P ∧ Q) 
F 

(P ∨ Q) 
F 

(P ⇒ Q) 
T 

(P ⇔ Q) 
T 

F T F T T F 
T F F T F F 
T T T T T T 

There are a couple notable features hidden in this table: 

•	 The phrase “P or Q” is true if P is true, Q is true, or both. Thus, you can have your 
cake and ice cream too. 

•	 The phrase “P implies Q” (equivalently, “if P , then Q”) is true when P is false or 
Q is true. Thus, “if the moon is made of green cheese, then there will be no final in 
6.042” is a true statement. 
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There are two more important phrases in mathematical writing: “for all” (symbolized 
by ∀) and “there exists” (symbolized by ∃). These are called quantifiers. A quantifier is 
always followed by a variable (and perhaps an indication of the range of that variable) and 
then a predicate, which typically involves that variable. Here are two examples: 

x∀ x ∈ R+ e < (1 + x)1+x 

∃ n ∈ N 2n > (100n)100 

xThe first statement says that e is less than (1 + x)1+x for every positive real number x. 
The second statement says that there exists a natural number n such that 2n > (100n)100 . 

The special symbols such as ∀, ∃, ¬, and ∨ are useful to logicians trying to express 
mathematical ideas without resorting to English at all. And other mathematicians often 
use these symbols as a shorthand. We recommend using them sparingly, however, because 
decrypting statements written in this symbolic language can be challenging! 

2 Proving an Implication 

Let’s try to prove the following theorem. 

Theorem 1. Let P (a, b) be any predicate defined for all a ∈ A and b ∈ B. Then: 

∃ a ∈ A ∀ b ∈ B P (a, b) ⇒ ∀ b ∈ B ∃ a ∈ A P (a, b) 

Yuck! Now you know you’re in a math class! Let’s impose a specific interpretation in 
order to give concrete meaning to this claim. Define: 

A = {6.042 students} 

B = {6.042 lectures}
P (a, b) = “student a falls asleep during lecture b” 

Interpreting the left side in these terms gives: 

∃ a ∈ A ∀ b ∈ B P (a, b) = “there exists a student that falls asleep in every lecture” 

So this side asserts that some particular student — let’s call him Snoozer — always falls 
asleep. Now on the right side, we have: 

∀ b ∈ B ∃ a ∈ A P (a, b) = “in every lecture, some student falls asleep” 

This is a slightly different assertion, because there might be a different sleeper in each lecture. 
Intuitively, the left side should imply the right; if Snoozer sleeps in every lecture, then in 
every lecture some student is surely asleep. 
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The implication in Theorem 1 is actually true for every predicate P and choice of sets A
and B. A universally-true statement, like this one, is called a validity . (Every tautology 
(cf. Lecture Notes 9/4, p.6) is a validity, but validities may also involve quantifiers.) The 
converse of an implication P Q is the reverse implication Q P . In this case, the ⇒	 ⇒
converse is: 

∀ b ∈ B ∃ a ∈ A P (a, b) ⇒ ∃ a ∈ A ∀ b ∈ B P (a, b) 

Under our interpretation, this says, “If in every lecture some student falls asleep, then there 
is some student who falls asleep in every lecture.” This is not necessarily true, although it 
might be true for certain choices of predicate and sets. But since the truth of this converse 
proposition depends on the particular choice of predicate and sets, it is not a validity. 

Anyway, let’s prove the theorem. 

Proof. We consider two cases. 

Case 1:	 Suppose that the left side of the implication is false. Then the claim as a 
whole is true by default. 

Case 2: Suppose that the left side of the implication is true. Then there 
exists some element a0 ∈ A such that P (a0, b) is true for all b ∈ B. 
Thus, for all b ∈ B there exists an a ∈ A (namely, a0) such that 
P (a, b) is true. Therefore, the right side of the implication is also 
true. 

In both cases, the left side implies the right side, and so the theorem holds. 

Broadly speaking, we just proved that P Q for some nasty-looking propositions P and⇒
Q. When P was false (case 1), the implication held trivially. When P was true (case 2), 
we had to do some work to show that Q was also true. Every implication proof has this 
same structure: all the substance is in case 2. Thus, ordinarily no one even bothers to write 
down case 1 or even to identify two cases! Instead, when proving an implication, you may 
dispense with everything except for the body of case 2; the boxed text alone is considered 
a valid proof of the theorem. In summary, in order to prove that P implies Q, you should 
assume that P is true and prove that Q is also true subject to that assumption. 
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3 Team Problem: A Mystery 

A certain cabal within the 6.042 course staff is plotting to make the final exam ridiculously 
hard. (“Problem 1. Prove that the axioms of mathematics are complete and consistent. 
Express your answer in Mayan hieroglyphics.”) The only way to stop their evil plan is to 
determine exactly who is in the cabal. The course staff consists of nine people: 

{Oscar, Stav, Darren, Patrice, David, Nick, Martyna, Marten, Tom} 

The cabal is a subset of these nine. A membership roster has been found and appears below, 
but it is deviously encrypted in logic notation. The predicate incabal indicates who is in the 
cabal; that is, incabal(x) is true if and only if x is a member. Translate each statement below 
into English and deduce who is in the cabal. 

(i) ∃x ∃y ∃z (x =� y ∧ x =� z ∧ y =� z ∧ incabal(x) ∧ incabal(y) ∧ incabal(z)) 

Solution. A direct English paraphrase would be “There exist people we’ll call x, y, 
and z, who are all different, such that x, y and z are each in the cabal.” A better 
version would use the fact that there’s no need in this case to give names to the 
people. Namely, a better paraphrase is, “There are 3 different people in the cabal.” 
Perhaps a simpler way to say this is, “The cabal is of size at least 3.” � 

(ii) (incabal(Stav) ∧ incabal(David)) ¬

Solution. Stav and David are not both in the cabal. Equivalently: at least one of 
Stav and David is not in the cabal. � 

(iii) ((incabalMartyna) ∨ incabal(Patrice)) → ∀x incabal(x) 

Solution. If either Martyna or Patrice is in the cabal, then everyone is. � 

(iv) incabal(Stav) incabal(David) → 

Solution. If Stav is in the cabal, then David is also. � 

(v) incabal(Darren) incabal(Martyna) → 

Solution. If Darren is in the cabal, then Martyna is also. � 

(vi) (incabal(Oscar) ∨ incabal(Nick)) incabal(Tom) → ¬

Solution. If either of Oscar or Nick is in the cabal, then Tom is not. Equivalently, if 
Tom is in the cabal, then neither Oscar nor Nick is. � 

(vii) (incabal(Oscar) ∨ incabal(David)) incabal(Marten)→ ¬
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Solution. If either of Oscar or David is in the cabal, then Marten is not. Equivalently, 
if Marten is in the cabal, then neither Oscar nor David is. � 

So much for the translations. We now argue that the only cabal satisfying all seven 
propositions above is one whose members are exactly Oscar, David, and Nick. 

We first observe that by (ii), there must be someone — either Stav or David — who is 
not in the cabal. But if either Martyna or Patrice were in the cabal, then by (iii), everyone 
would be. So we conclude by contradiction that 

Martyna and Patrice are not in the cabal. (1) 

Now consider that (v) implies its contrapositive: if Martyna is not in the cabal, then 
neither is Darren. Therefore, since Martyna is not in the cabal, 

Darren is not in the cabal. (2) 

Next observe that if Stav were in the cabal, then by (iv), David would be too, contradict­
ing (ii). So by again contradiction, we conclude that 

Stav is not in the cabal. (3) 

Now suppose Tom is in the cabal. Then by (vi), Oscar and Nick are not. We already 
know Martyna, Patrice, Darren, and Stav are not in the cabal, leaving only three who could 
be — Tom, Marten, and David. But by (i) the cabal must have at least three members, so 
it follows that the cabal must consist of exactly these three. This proves: 

Lemma 2. If Tom is in the cabal, then Marten and David are in the cabal. 

But by (vii), if David is the cabal, then Marten is not. That is, 

Lemma 3. David and Marten cannot both be in the cabal. 

Now from Lemma 3 we conclude that the conclusion of Lemma 2 is false. So by contra-
positive, the hypothesis of Lemma 2 must also be false, namely, 

Tom is not in the cabal. (4) 

Finally, suppose Marten is in the cabal. Then by (vii), Oscar and David are not, and 
we already know Martyna, Patrice, Darren, Stav, and Tom are not. So the cabal must 
consist of at most two people (Marten and Nick). This contradicts (i), and we conclude by 
contradiction that 

Marten is not in the cabal. (5) 

So the only remaining people who could be in the cabal are Oscar, David, and Nick. Since 
the cabal must have at least three members, we conclude that 
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Lemma 4. The only possible cabal consists of Oscar, David, and Nick. 

But we’re not done yet: we haven’t shown that a cabal consisting of Oscar, David, and 
Nick actually does satisfy all seven conditions. So let A = {Oscar, David, Nick}, and let’s 
quickly check that A satisfies (i)–(vii): 

•	 |A| = 3, so A satisfies (i). 

•	 Stav is not in A, so A satisfies (ii) and (iv). 

•	 Neither Martyna nor Patrice is in A, so the hypothesis of (iii) is false, which means 
that A satisfies (iii). 

•	 Darren is not in A, so A satisfies (v). 

•	 Finally, Tom and Marten are not in A, so the conclusions of both (vi) and (vii) are 
true, and so A satisfies (vi) and (vii). 

So now we have proved 

Proposition. {Oscar, David, Nick} is the unique cabal satisfying conditions (i)–(vii). 
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