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Events and Probability Spaces 

14.1 Let’s Make a Deal 

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant 
responded to this letter: 

Suppose you’re on a game show, and you’re given the choice of three 
doors. Behind one door is a car, behind the others, goats. You pick a 
door, say number 1, and the host, who knows what’s behind the doors, 
opens another door, say number 3, which has a goat. He says to you, 
”Do you want to pick door number 2?” Is it to your advantage to 
switch your choice of doors? 

Craig. F. Whitaker 
Columbia, MD 

The letter describes a situation like one faced by contestants in the 1970’s game 
show Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied 
that the contestant should indeed switch. She explained that if the car was behind 
either of the two unpicked doors—which is twice as likely as the the car being 
behind the picked door—the contestant wins by switching. But she soon received 
a torrent of letters, many from mathematicians, telling her that she was wrong. The 
problem became known as the Monty Hall Problem and it generated thousands of 
hours of heated debate. 

This incident highlights a fact about probability: the subject uncovers lots of 
examples where ordinary intuition leads to completely wrong conclusions. So until 
you’ve studied probabilities enough to have refined your intuition, a way to avoid 
errors is to fall back on a rigorous, systematic approach such as the Four Step 
Method that we will describe shortly. First, let’s make sure we really understand 
the setup for this problem. This is always a good thing to do when you are dealing 
with probability. 

14.1.1 Clarifying the Problem 

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some 
assumptions in order to have any hope of modeling the game formally. For exam­
ple, we will assume that: 
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1. The car is equally likely to be hidden behind each of the three doors. 

2. The player is equally likely to pick each of the three doors, regardless of the 
car’s location. 

3. After the player picks a door, the host must open a different door with a goat 
behind it and offer the player the choice of staying with the original door or 
switching. 

4. If the host has a choice of which door to open, then he is equally likely to 
select each of them. 

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. Other 
interpretations are at least as defensible, and some actually lead to different an­
swers. But let’s accept these assumptions for now and address the question, “What 
is the probability that a player who switches wins the car?” 

14.2 The Four Step Method 

Every probability problem involves some sort of randomized experiment, process, 
or game. And each such problem involves two distinct challenges: 

1. How do we model the situation mathematically? 

2. How do we solve the resulting mathematical problem? 

In this section, we introduce a four step approach to questions of the form, “What 
is the probability that. . . ?” In this approach, we build a probabilistic model step-
by-step, formalizing the original question in terms of that model. Remarkably, the 
structured thinking that this approach imposes provides simple solutions to many 
famously-confusing problems. For example, as you’ll see, the four step method 
cuts through the confusion surrounding the Monty Hall problem like a Ginsu knife. 

14.2.1 Step 1: Find the Sample Space 

Our first objective is to identify all the possible outcomes of the experiment. A 
typical experiment involves several randomly-determined quantities. For example, 
the Monty Hall game involves three such quantities: 

1. The door concealing the car. 

2. The door initially chosen by the player. 
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car location

A

B

C

Figure 14.1 The first level in a tree diagram for the Monty Hall Problem. The 
branches correspond to the door behind which the car is located. 

3. The door that the host opens to reveal a goat. 

Every possible combination of these randomly-determined quantities is called an 
outcome. The set of all possible outcomes is called the sample space for the exper­
iment. 

A tree diagram is a graphical tool that can help us work through the four step 
approach when the number of outcomes is not too large or the problem is nicely 
structured. In particular, we can use a tree diagram to help understand the sample 
space of an experiment. The first randomly-determined quantity in our experiment 
is the door concealing the prize. We represent this as a tree with three branches, as 
shown in Figure 14.1. In this diagram, the doors are called A, B , and C instead of 
1, 2, and 3, because we’ll be adding a lot of other numbers to the picture later. 

For each possible location of the prize, the player could initially choose any of 
the three doors. We represent this in a second layer added to the tree. Then a third 
layer represents the possibilities of the final step when the host opens a door to 
reveal a goat, as shown in Figure 14.2. 

Notice that the third layer reflects the fact that the host has either one choice 
or two, depending on the position of the car and the door initially selected by the 
player. For example, if the prize is behind door A and the player picks door B, then 
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Figure 14.2 The full tree diagram for the Monty Hall Problem. The second level 
indicates the door initially chosen by the player. The third level indicates the door 
revealed by Monty Hall. 
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the host must open door C. However, if the prize is behind door A and the player 
picks door A, then the host could open either door B or door C. 

Now let’s relate this picture to the terms we introduced earlier: the leaves of the 
tree represent outcomes of the experiment, and the set of all leaves represents the 
sample space. Thus, for this experiment, the sample space consists of 12 outcomes. 
For reference, we’ve labeled each outcome in Figure 14.3 with a triple of doors 
indicating: 

.door concealing prize; door initially chosen; door opened to reveal a goat/: 

In these terms, the sample space is the set � � 
.A; A; B/; .A; A; C /; .A; B; C /; .A; C; B/; .B; A; C /; .B; B; A/; S D 
.B; B; C /; .B; C; A/; .C; A; B/; .C; B; A/; .C; C; A/; .C; C; B/ 

The tree diagram has a broader interpretation as well: we can regard the whole 
experiment as following a path from the root to a leaf, where the branch taken at 
each stage is “randomly” determined. Keep this interpretation in mind; we’ll use it 
again later. 

14.2.2 Step 2: Define Events of Interest 

Our objective is to answer questions of the form “What is the probability that . . . ?”, 
where, for example, the missing phrase might be “the player wins by switching”, 
“the player initially picked the door concealing the prize”, or “the prize is behind 
door C”. Each of these phrases characterizes a set of outcomes. For example, the 
outcomes specified by “the prize is behind door C ” is: 

f.C; A; B/; .C; B; A/; .C; C; A/; .C; C; B/g: 

A set of outcomes is called an event and it is a subset of the sample space. So the 
event that the player initially picked the door concealing the prize is the set: 

f.A; A; B/; .A; A; C /; .B; B; A/; .B; B; C /; .C; C; A/; .C; C; B/g: 

And what we’re really after, the event that the player wins by switching, is the set 
of outcomes: 

f.A; B; C /; .A; C; B/; .B; A; C /; .B; C; A/; .C; A; B/; .C; B; A/g: 

These outcomes are denoted with a check mark in Figure 14.4. 
Notice that exactly half of the outcomes are checked, meaning that the player 

wins by switching in half of all outcomes. You might be tempted to conclude that 
a player who switches wins with probability 1=2. This is wrong. The reason is that 
these outcomes are not all equally likely, as we’ll see shortly. 
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Figure 14.3 The tree diagram for the Monty Hal Problem with the outcomes la­
beled for each path from root to leaf. For example, outcome .A; A; B/ corresponds 
to the car being behind door A, the player initially choosing door A, and Monty 
Hall revealing the goat behind door B . 
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Figure 14.4 The tree diagram for the Monty Hall Problem where the outcomes 
in the event where the player wins by switching are denoted with a check mark. 
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14.2.3 Step 3: Determine Outcome Probabilities 

So far we’ve enumerated all the possible outcomes of the experiment. Now we 
must start assessing the likelihood of those outcomes. In particular, the goal of this 
step is to assign each outcome a probability, indicating the fraction of the time this 
outcome is expected to occur. The sum of all outcome probabilities must be one, 
reflecting the fact that there always is an outcome. 

Ultimately, outcome probabilities are determined by the phenomenon we’re mod­
eling and thus are not quantities that we can derive mathematically. However, math­
ematics can help us compute the probability of every outcome based on fewer and 
more elementary modeling decisions. In particular, we’ll break the task of deter­
mining outcome probabilities into two stages. 

Step 3a: Assign Edge Probabilities 

First, we record a probability on each edge of the tree diagram. These edge-
probabilities are determined by the assumptions we made at the outset: that the 
prize is equally likely to be behind each door, that the player is equally likely to 
pick each door, and that the host is equally likely to reveal each goat, if he has a 
choice. Notice that when the host has no choice regarding which door to open, the 
single branch is assigned probability 1. For example, see Figure 14.5. 

Step 3b: Compute Outcome Probabilities 

Our next job is to convert edge probabilities into outcome probabilities. This is a 
purely mechanical process: the probability of an outcome is equal to the product of 
the edge-probabilities on the path from the root to that outcome. For example, the 
probability of the topmost outcome in Figure 14.5, .A; A; B/, is 

1 1 1 1 
:� � D

3 3 2 18 

There’s an easy, intuitive justification for this rule. As the steps in an experiment 
progress randomly along a path from the root of the tree to a leaf, the probabilities 
on the edges indicate how likely the path is to proceed along each branch. For 
example, a path starting at the root in our example is equally likely to go down 
each of the three top-level branches. 

How likely is such a path to arrive at the topmost outcome, .A; A; B/? Well, 
there is a 1-in-3 chance that a path would follow the A-branch at the top level, 
a 1-in-3 chance it would continue along the A-branch at the second level, and 1­
in-2 chance it would follow the B-branch at the third level. Thus, it seems that 
1 path in 18 should arrive at the .A; A; B/ leaf, which is precisely the probability 
we assign it. 
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Figure 14.5 The tree diagram for the Monty Hall Problem where edge weights 
denote the probability of that branch being taken given that we are at the parent of 
that branch. For example, if the car is behind door A, then there is a 1/3 chance that 
the player’s initial selection is door B . 
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We have illustrated all of the outcome probabilities in Figure 14.6. 
Specifying the probability of each outcome amounts to defining a function that 

maps each outcome to a probability. This function is usually called Pr. In these 
terms, we’ve just determined that: 

1
PrŒ.A; A; B/� D ; 

18 
1

PrŒ.A; A; C /� D ; 
18 
1

PrŒ.A; B; C /� D ; 
9 

etc. 

14.2.4 Step 4: Compute Event Probabilities 

We now have a probability for each outcome, but we want to determine the proba­
bility of an event. The probability of an event E is denoted by PrŒE� and it is the 
sum of the probabilities of the outcomes in E. For example, the probability of the 
event that the player wins by switching is:1 

PrŒswitching wins� D PrŒ.A; B; C /� C PrŒ.A; C; B/� C PrŒ.B; A; C /�C 

PrŒ.B; C; A/� C PrŒ.C; A; B/� C PrŒ.C; B; A/� 

1 1 1 1 1 1 
D

9 
C

9 
C

9 
C

9 
C

9 
C

9 
2 

:D
3 

It seems Marilyn’s answer is correct! A player who switches doors wins the car 
with probability 2=3. In contrast, a player who stays with his or her original door 
wins with probability 1=3, since staying wins if and only if switching loses. 

We’re done with the problem! We didn’t need any appeals to intuition or inge­
nious analogies. In fact, no mathematics more difficult than adding and multiplying 
fractions was required. The only hard part was resisting the temptation to leap to 
an “intuitively obvious” answer. 

14.2.5 An Alternative Interpretation of the Monty Hall Problem 

Was Marilyn really right? Our analysis indicates that she was. But a more accurate 
conclusion is that her answer is correct provided we accept her interpretation of the 

1“Switching wins” is shorthand for the set of outcomes where switching wins; namely, 
f.A; B; C /; .A; C; B/; .B; A; C /; .B; C; A/; .C; A; B/; .C; B; A/g. We will frequently use such 
shorthand to denote events. 
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Figure 14.6 The rightmost column shows the outcome probabilities for the 
Monty Hall Problem. Each outcome probability is simply the product of the prob­
abilities on the branches on the path from the root to the leaf for that outcome. 
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a b c

Figure 14.7 The strange dice. The number of pips on each concealed face is the 
same as the number on the opposite face. For example, when you roll die A, the 
probabilities of getting a 2, 6, or 7 are each 1=3. 

question. There is an equally plausible interpretation in which Marilyn’s answer 
is wrong. Notice that Craig Whitaker’s original letter does not say that the host is 
required to reveal a goat and offer the player the option to switch, merely that he 
did these things. In fact, on the Let’s Make a Deal show, Monty Hall sometimes 
simply opened the door that the contestant picked initially. Therefore, if he wanted 
to, Monty could give the option of switching only to contestants who picked the 
correct door initially. In this case, switching never works! 

14.3 Strange Dice 

The four-step method is surprisingly powerful. Let’s get some more practice with 
it. Imagine, if you will, the following scenario. 

It’s a typical Saturday night. You’re at your favorite pub, contemplating the 
true meaning of infinite cardinalities, when a burly-looking biker plops down on 
the stool next to you. Just as you are about to get your mind around P.P.R//, 
biker dude slaps three strange-looking dice on the bar and challenges you to a $100 
wager. 

The rules are simple. Each player selects one die and rolls it once. The player 
with the lower value pays the other player $100. 

Naturally, you are skeptical. A quick inspection reveals that these are not ordi­
nary dice. They each have six sides, but the numbers on the dice are different, as 
shown in Figure 14.7. 

Biker dude notices your hesitation and so he offers to let you pick a die first, and 
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then he will choose his die from the two that are left. That seals the deal since you 
figure that you now have an advantage. 

But which of the dice should you choose? Die B is appealing because it has 
a 9, which is a sure winner if it comes up. Then again, die A has two fairly large 
numbers and die B has an 8 and no really small values. 

In the end, you choose die B because it has a 9, and then biker dude selects die A. 
Let’s see what the probability is that you will win.2 Not surprisingly, we will use 
the four-step method to compute this probability. 

14.3.1 Die A versus Die B 

Step 1: Find the sample space. 
The sample space for this experiment is worked out in the tree diagram shown in 
Figure 14.8.3 

For this experiment, the sample space is a set of nine outcomes: 

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g: 

Step 2: Define events of interest. 
We are interested in the event that the number on die A is greater than the number 
on die B . This event is a set of five outcomes: 

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g: 

These outcomes are marked A in the tree diagram in Figure 14.8. 

Step 3: Determine outcome probabilities. 
To find outcome probabilities, we first assign probabilities to edges in the tree di­
agram. Each number on each die comes up with probability 1=3, regardless of 
the value of the other die. Therefore, we assign all edges probability 1=3. The 
probability of an outcome is the product of the probabilities on the correspond­
ing root-to-leaf path, which means that every outcome has probability 1=9. These 
probabilities are recorded on the right side of the tree diagram in Figure 14.8. 

Step 4: Compute event probabilities. 
The probability of an event is the sum of the probabilities of the outcomes in that 
event. In this case, all the outcome probabilities are the same. In general, when the 
probability of every outcome is the same, we say that the sample space is uniform. 
Computing event probabilities for uniform sample spaces is particularly easy since 

2Of course, you probably should have done this before picking die B in the first place. 
3Actually, the whole probability space is worked out in this one picture. But pretend that each 

component sort of fades in—nyyrrroom!—as you read about the corresponding step below. 
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Figure 14.8 The tree diagram for one roll of die A versus die B . Die A wins with 
probability 5=9. 
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you just have to compute the number of outcomes in the event. In particular, for 
any event E in a uniform sample space S, 

PrŒE� D
jEj

: (14.1)
jSj 

In this case, E is the event that die A beats die B , so jEj D 5, jSj D 9, and 

PrŒE� D 5=9: 

This is bad news for you. Die A beats die B more than half the time and, not 
surprisingly, you just lost $100. 

Biker dude consoles you on your “bad luck” and, given that he’s a sensitive guy 
beneath all that leather, he offers to go double or nothing.4 Given that your wallet 
only has $25 in it, this sounds like a good plan. Plus, you figure that choosing die A 
will give you the advantage. 

So you choose A, and then biker dude chooses C . Can you guess who is more 
likely to win? (Hint: it is generally not a good idea to gamble with someone you 
don’t know in a bar, especially when you are gambling with strange dice.) 

14.3.2 Die A versus Die C 

We can construct the three diagram and outcome probabilities as before. The result 
is shown in Figure 14.9 and there is bad news again. Die C will beat die A with 
probability 5=9, and you lose once again. 

You now owe the biker dude $200 and he asks for his money. You reply that you 
need to go to the bathroom. 

Being a sensitive guy, biker dude nods understandingly and offers yet another 
wager. This time, he’ll let you have die C . He’ll even let you raise the wager 
to $200 so you can win your money back. 

This is too good a deal to pass up. You know that die C is likely to beat die A 
and that die A is likely to beat die B , and so die C is surely the best. Whether biker 
dude picks A or B , the odds are surely in your favor this time. Biker dude must 
really be a nice guy. 

So you pick C , and then biker dude picks B . Let’s use the tree method to figure 
out the probability that you win. 

4Double or nothing is slang for doing another wager after you have lost the first. If you lose again, 
you will owe biker dude double what you owed him before. If you win, you will now be even and 
you will owe him nothing. 
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Figure 14.9 The tree diagram for one roll of die C versus die A. Die C wins with 
probability 5=9. 
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Figure 14.10 The tree diagram for one roll of die B versus die C . Die B wins 
with probability 5=9. 

14.3.3 Die B versus Die C 

The tree diagram and outcome probabilities for B versus C are shown in Fig­
ure 14.10. But surely there is a mistake! The data in Figure 14.10 shows that 
die B wins with probability 5=9. How is it possible that 

C beats A with probability 5=9,


A beats B with probability 5=9, and


B beats C with probability 5=9?


The problem is not with the math, but with your intuition. It seems that the 
“likely-to-beat” relation should be transitive. But it is not, and whatever die you 
pick, biker dude can pick one of the others and be likely to win. So picking first is 
a big disadvantage and you now owe biker dude $400. 

Just when you think matters can’t get worse, biker dude offers you one final 
wager for $1,000. This time, you demand to choose second. Biker dude agrees, 
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1
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5
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14
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14

18

‹

Figure 14.11 Parts of the tree diagram for die B versus die A where each die is 
rolled twice. The first two levels are shown in (a). The last two levels consist of 
nine copies of the tree in (b). 

but with the condition that instead of rolling each die once, you each roll your die 
twice and your score is the sum of your rolls. 

Believing that you finally have a winning wager, you agree.5 Biker dude chooses 
die B and, of course, you grab die A. That’s because you know that die A will beat 
die B with probability 5=9 on one roll and so surely two rolls of die A are likely to 
beat two rolls of die B , right? 

Wrong! 

14.3.4 Rolling Twice 

If each player rolls twice, the tree diagram will have four levels and 34 D 81 out­
comes. This means that it will take a while to write down the entire tree diagram. 
We can, however, easily write down the first two levels (as we have done in Fig­
ure 14.11(a)) and then notice that the remaining two levels consist of nine identical 
copies of the tree in Figure 14.11(b). 

The probability of each outcome is .1=3/4 D 1=81 and so, once again, we have 
a uniform probability space. By Equation 14.1, this means that the probability that 
A wins is the number of outcomes where A beats B divided by 81. 

To compute the number of outcomes where A beats B , we observe that the sum 

5Did we mention that playing strange gambling games with strangers in a bar is a bad idea? 
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of the two rolls of die A is equally likely to be any element of the following multiset: 

SA D f4; 8; 8; 9; 9; 12; 13; 13; 14g: 

The sum of two rolls of die B is equally likely to be any element of the following 
multiset: 

SB D f2; 6; 6; 10; 10; 10; 14; 14; 18g: 

We can treat each outcome as a pair .x; y/ 2 SA � SB , where A wins iff x > y. If 
x D 4, there is only one y (namely y D 2) for which x > y. If x D 8, there are 
three values of y for which x > y. Continuing the count in this way, the number 
of pairs for which x > y is 

1 C 3 C 3 C 3 C 3 C 6 C 6 C 6 C 6 D 37: 

A similar count shows that there are 42 pairs for which x > y, and there are 
two pairs (.14; 14/, .14; 14/) which result in ties. This means that A loses to B 
with probability 42=81 > 1=2 and ties with probability 2=81. Die A wins with 
probability only 37=81. 

How can it be that A is more likely than B to win with 1 roll, but B is more 
likely to win with 2 rolls?!? Well, why not? The only reason we’d think otherwise 
is our (faulty) intuition. In fact, the die strength reverses no matter which two die 
we picked. So for 1 roll, 

A � B � C � A; 

but for two rolls, 
A � B � C � A; 

where we have used the symbols � and � to denote which die is more likely to 
result in the larger value. This is surprising even to us, but at least we don’t owe 
biker dude $1400. 

14.3.5 Even Stranger Dice 

Now that we know that strange things can happen with strange dice, it is natural, 
at least for mathematicians, to ask how strange things can get. It turns out that 
things can get very strange. In fact, mathematicians6 recently made the following 
discovery: 

Theorem 14.3.1. For any n � 2, there is a set of n dice D1, D2, . . . , Dn such that 
for any n-node tournament graph7 G, there is a number of rolls k such that if each 

6Reference Ron Graham paper. 
7Recall that a tournament graph is a directed graph for which there is precisely one directed edge 

between any two distinct nodes. In other words, for every pair of distinct nodes u and v, either u 
beats v or v beats u, but not both. 
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D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

D1

D3 D2

.a/ .b/ .c/ .d/

.e/ .f / .g/ .h/

Figure 14.12 All possible relative strengths for three dice D1, D2, and D3. The 
edge Di ! Dj denotes that the sum of rolls for Di is likely to be greater than the 
sum of rolls for Dj . 

die is rolled k times, then for all i ¤ j , the sum of the k rolls for Di will exceed 
the sum for Dj with probability greater than 1=2 iff Di ! Dj is in G. 

It will probably take a few attempts at reading Theorem 14.3.1 to understand 
what it is saying. The idea is that for some sets of dice, by rolling them different 
numbers of times, the dice have varying strengths relative to each other. (This is 
what we observed for the dice in Figure 14.7.) Theorem 14.3.1 says that there is a 
set of (very) strange dice where every possible collection of relative strengths can 
be observed by varying the number of rolls. For example, the eight possible relative 
strengths for n D 3 dice are shown in Figure 14.12. 

Our analysis for the dice in Figure 14.7 showed that for 1 roll, we have the 
relative strengths shown in Figure 14.12(a), and for two rolls, we have the (reverse) 
relative strengths shown in Figure 14.12(b). Can you figure out what other relative 
strengths are possible for the dice in Figure 14.7 by using more rolls? This might 
be worth doing if you are prone to gambling with strangers in bars. 
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14.4 Set Theory and Probability 

The study of probability is very closely tied to set theory. That is because any set 
can be a sample space and any subset can be an event. This means that most of 
the rules and identities that we have developed for sets extend very naturally to 
probability. We’ll cover several examples in this section, but first let’s review some 
definitions that should already be familiar. 

14.4.1 Probability Spaces 

Definition 14.4.1. A countable8 sample space S is a nonempty countable set. An 
element w 2 S is called an outcome. A subset of S is called an event. 

Definition 14.4.2. A probability function on a sample space S is a total function 
Pr W S ! R such that 

� PrŒw� � 0 for all w 2 S, and P 
� w2S PrŒw� D 1. 

A sample space together with a probability function is called a probability space. 
For any event E � S, the probability of E is defined to be the sum of the probabil­
ities of the outcomes in E: X 

PrŒE� WWD PrŒw�: 
w2E 

14.4.2 Probability Rules from Set Theory 

An immediate consequence of the definition of event probability is that for disjoint 
events E and F , 

PrŒE [ F � D PrŒE� C PrŒF �: 

This generalizes to a countable number of events, as follows. 

Rule 14.4.3 (Sum Rule). If fE0; E1; : : : g is collection of disjoint events, then " #[ X 
Pr En D PrŒEn�: 

n2N n2N 

8Yes, sample spaces can be infinite. We’ll see some examples shortly. If you did not read Chap­
ter 13, don’t worry—countable means that you can list the elements of the sample space as w1, w2, 
w3, . . . . 
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The Sum Rule lets us analyze a complicated event by breaking it down into 
simpler cases. For example, if the probability that a randomly chosen MIT student 
is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then 
the probability that a random MIT student is native to North America is 70%. 

Another consequence of the Sum Rule is that PrŒA� C PrŒA� D 1, which follows 
because PrŒS� D 1 and S is the union of the disjoint sets A and A. This equation 
often comes up in the form: 

Rule 14.4.4 (Complement Rule). 

PrŒA� D 1 � PrŒA�: 

Sometimes the easiest way to compute the probability of an event is to compute 
the probability of its complement and then apply this formula. 

Some further basic facts about probability parallel facts about cardinalities of 
finite sets. In particular: 

PrŒB � A� D PrŒB� � PrŒA \ B�, (Difference Rule) 
PrŒA [ B� D PrŒA� C PrŒB� � PrŒA \ B�, (Inclusion-Exclusion) 
PrŒA [ B� � PrŒA� C PrŒB�, (Boole’s Inequality 
If A � B , then PrŒA� � PrŒB�. (Monotonicity) 

The Difference Rule follows from the Sum Rule because B is the union of the 
disjoint sets B � A and A \ B . Inclusion-Exclusion then follows from the Sum 
and Difference Rules, because A [ B is the union of the disjoint sets A and B � 
A. Boole’s inequality is an immediate consequence of Inclusion-Exclusion since 
probabilities are nonnegative. Monotonicity follows from the definition of event 
probability and the fact that outcome probabilities are nonnegative. 

The two-event Inclusion-Exclusion equation above generalizes to n events in 
the same way as the corresponding Inclusion-Exclusion rule for n sets. Boole’s 
inequality also generalizes to 

PrŒE1 [ � � � [En� � PrŒE1� C � � � C PrŒEn�: (Union Bound) 

This simple Union Bound is useful in many calculations. For example, suppose 
that Ei is the event that the i -th critical component in a spacecraft fails. ThenP
E1 [ � � � [ En is the event that some critical component fails. If i

n 
D1 PrŒEi � 

is small, then the Union Bound can give an adequate upper bound on this vital 
probability. 
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14.4.3 Uniform Probability Spaces 

Definition 14.4.5. A finite probability space S, Pr is said to be uniform if PrŒw� is 
the same for every outcome w 2 S. 

As we saw in the strange dice problem, uniform sample spaces are particularly 
easy to work with. That’s because for any event E � S, 

PrŒE� D
jEj

: (14.2) 

4
2 

jSj 

4
3 

This means that once we know the cardinality of E and S, we can immediately 

5 

obtain PrŒE�. That’s great news because we developed lots of tools for computing 
the cardinality of a set in Part III. 

For example, suppose that you select five cards at random from a standard deck 
of 52 cards. What is the probability of having a full house? Normally, this question 
would take some effort to answer. But from the analysis in Section 11.7.2, we know 
that ! 

13 
jSj D 

5 

and ! ! 
4 4 

jEj D 13 � � 12 �
3 2 

where E is the event that we have a full house. Since every five-card hand is equally 
likely, we can apply Equation 14.2 to find that 

PrŒE� D 
13 � 12� � � � 

13 

13 � 12 � 4 � 6 � 5 � 4 � 3 � 2 
D 

52 � 51 � 50 � 49 � 48 
18 

D
12495 
1 

�
694

: 

14.5 Infinite Probability Spaces 

General probability theory deals with uncountable sets like R, but in computer sci­
ence, it is usually sufficient to restrict our attention to countable probability spaces. 
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Figure 14.13 The tree diagram for the game where players take turns flipping a 
fair coin. The first player to flip heads wins. 

It’s also a lot easier—infinite sample spaces are hard enough to work with without 
having to deal with uncountable spaces. 

Infinite probability spaces are fairly common. For example, two players take 
turns flipping a fair coin. Whoever flips heads first is declared the winner. What is 
the probability that the first player wins? A tree diagram for this problem is shown 
in Figure 14.13. 

The event that the first player wins contains an infinite number of outcomes, but 
we can still sum their probabilities: 

1 1 1 1
PrŒfirst player wins� D C C C C � � �

2 8 32 128 
1 � �X1 1 n 

D
2 4 

nD0� � 
1 1 2 

:D
2 1 � 1=4 

D
3 

Similarly, we can compute the probability that the second player wins:


1 1 1 1 1
PrŒsecond player wins� D C C C C � � � D : 

4 16 64 256 3 

In this case, the sample space is the infinite set


S WWD fTnH j n 2 N g;
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where Tn stands for a length n string of T’s. The probability function is 

1 
:PrŒTnH� WWD

2nC1 

To verify that this is a probability space, we just have to check that all the probabili­
ties are nonnegative and that they sum to 1. Nonnegativity is obvious, and applying 
the formula for the sum of a geometric series, we find that X X 1

PrŒTnH� D 
2nC1 

D 1: 
n2N n2N 

Notice that this model does not have an outcome corresponding to the possibility 
that both players keep flipping tails forever.9 That’s because the probability of 
flipping forever would be 

1
lim D 0; 

n!1 2nC1 

and outcomes with probability zero will have no impact on our calculations. 

9In the diagram, flipping forever corresponds to following the infinite path in the tree without 
ever reaching a leaf or outcome. Some texts deal with this case by adding a special “infinite” sample 
point wforever to the sample space, but we will follow the more traditional approach of excluding such 
sample points, as long as they collectively have probability 0. 
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