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Graph Theory 
Informally, a graph is a bunch of dots and lines where the lines connect some pairs 
of dots. An example is shown in Figure 5.1. The dots are called nodes (or vertices) 
and the lines are called edges. 
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Figure 5.1 An example of a graph with 9 nodes and 8 edges. 

Graphs are ubiquitous in computer science because they provide a handy way 
to represent a relationship between pairs of objects. The objects represent items 
of interest such as programs, people, cities, or web pages, and we place an edge 
between a pair of nodes if they are related in a certain way. For example, an edge 
between a pair of people might indicate that they like (or, in alternate scenarios, 
that they don’t like) each other. An edge between a pair of courses might indicate 
that one needs to be taken before the other. 

In this chapter, we will focus our attention on simple graphs where the relation­
ship denoted by an edge is symmetric. Afterward, in Chapter 6, we consider the 
situation where the edge denotes a one-way relationship, for example, where one 
web page points to the other.1 

5.1 Definitions 

5.1.1 Simple Graphs 

Definition 5.1.1. A simple graph G consists of a nonempty set V , called the ver­
tices (aka nodes2) of G, and a set E of two-element subsets of V . The members 
of E are called the edges of G, and we write G D .V; E/. 

1Two Stanford students analyzed such a graph to become multibillionaires. So, pay attention to 
graph theory, and who knows what might happen! 

2We will use the terms vertex and node interchangeably. 
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The vertices correspond to the dots in Figure 5.1, and the edges correspond to the 
lines. The graph in Figure 5.1 is expressed mathematically as G D .V; E/, where: 

V D fa; b; c; d; e; f; g; h; ig


E D f fa; bg; fa; cg; fb; d g; fc; d g; fc; eg; fe; f g; fe; gg; fh; ig g:


Note that fa; bg and fb; ag are different descriptions of the same edge, since sets 
are unordered. In this case, the graph G D .V; E/ has 9 nodes and 8 edges. 

Definition 5.1.2. Two vertices in a simple graph are said to be adjacent if they 
are joined by an edge, and an edge is said to be incident to the vertices it joins. 
The number of edges incident to a vertex v is called the degree of the vertex and 
is denoted by deg.v/; equivalently, the degree of a vertex is equals the number of 
vertices adjacent to it. 

For example, in the simple graph shown in Figure 5.1, vertex a is adjacent to b 
and b is adjacent to d , and the edge fa; cg is incident to vertices a and c. Vertex h 
has degree 1, d has degree 2, and deg.e/ D 3. It is possible for a vertex to have 
degree 0, in which case it is not adjacent to any other vertices. A simple graph does 
not need to have any edges at all —in which case, the degree of every vertex is zero 
and jEj D 03 —but it does need to have at least one vertex, that is, jV j � 1. 

Note that simple graphs do not have any self-loops (that is, an edge of the form 
fa; ag) since an edge is defined to be a set of two vertices. In addition, there is at 
most one edge between any pair of vertices in a simple graph. In other words, a 
simple graph does not contain multiedges or multiple edges. That is because E is a 
set. Lastly, and most importantly, simple graphs do not contain directed edges (that 
is, edges of the form .a; b/ instead of fa; bg). 

There’s no harm in relaxing these conditions, and some authors do, but we don’t 
need self-loops, multiple edges between the same two vertices, or graphs with no 
vertices, and it’s simpler not to have them around. We will consider graphs with di­
rected edges (called directed graphs or digraphs) at length in Chapter 6. Since we’ll 
only be considering simple graphs in this chapter, we’ll just call them “graphs” 
from now on. 

5.1.2 Some Common Graphs 

Some graphs come up so frequently that they have names. The complete graph 
on n vertices, denoted Kn, has an edge between every two vertices, for a total of 
n.n � 1/=2 edges. For example, K5 is shown in Figure 5.2. 

The empty graph has no edges at all. For example, the empty graph with 5 nodes 
is shown in Figure 5.3. 

3The cardinality, jEj, of the set E is the number of elements in E. 
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Figure 5.2 The complete graph on 5 nodes, K5. 

Figure 5.3 The empty graph with 5 nodes. 

The n-node graph containing n � 1 edges in sequence is known as the line 
graph Ln. More formally, Ln D .V; E/ where 

V D fv1; v2; : : : ; vng 

and 
E D f fv1; v2g; fv2; v3g; : : : ; fvn�1; vng g 

For example, L5 is displayed in Figure 5.4. 
If we add the edge fvn; v1g to the line graph Ln, we get the graph Cn consisting 

of a simple cycle. For example, C5 is illustrated in Figure 5.5. 

Figure 5.4 The 5-node line graph L5. 
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Figure 5.5 The 5-node cycle graph C5. 
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Figure 5.6 Two graphs that are isomorphic to C4. 

5.1.3 Isomorphism 

Two graphs that look the same might actually be different in a formal sense. For 
example, the two graphs in Figure 5.6 are both simple cycles with 4 vertices, but one 
graph has vertex set fa; b; c; dg while the other has vertex set f1; 2; 3; 4g. Strictly 
speaking, these graphs are different mathematical objects, but this is a frustrating 
distinction since the graphs look the same! 

Fortunately, we can neatly capture the idea of “looks the same” through the no­
tion of graph isomorphism. 

Definition 5.1.3. If G1 D .V1; E1/ and G2 D .V2; E2/ are two graphs, then we 
say that G1 is isomorphic to G2 iff there exists a bijection4 f W V1 ! V2 such that 
for every pair of vertices u; v 2 V1: 

fu; vg 2 E1 iff ff .u/; f .v/g 2 E2: 

The function f is called an isomorphism between G1 and G2. 

In other words, two graphs are isomorphic if they are the same up to a relabeling 
of their vertices. For example, here is an isomorphism between vertices in the two 

4A bijection f W V1 ! V2 is a function that associates every node in V1 with a unique node in V2 
and vice-versa. We will study bijections more deeply in Part III. 
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Figure 5.7 Two ways of drawing C5. 

graphs shown in Figure 5.6: 

a corresponds to 1 b corresponds to 2 
d corresponds to 4 c corresponds to 3: 

You can check that there is an edge between two vertices in the graph on the left if 
and only if there is an edge between the two corresponding vertices in the graph on 
the right. 

Two isomorphic graphs may be drawn very differently. For example, we have 
shown two different ways of drawing C5 in Figure 5.7. 

Isomorphism preserves the connection properties of a graph, abstracting out what 
the vertices are called, what they are made out of, or where they appear in a drawing 
of the graph. More precisely, a property of a graph is said to be preserved under 
isomorphism if whenever G has that property, every graph isomorphic to G also 
has that property. For example, isomorphic graphs must have the same number of 
vertices. What’s more, if f is a graph isomorphism that maps a vertex, v, of one 
graph to the vertex, f .v/, of an isomorphic graph, then by definition of isomor­
phism, every vertex adjacent to v in the first graph will be mapped by f to a vertex 
adjacent to f .v/ in the isomorphic graph. This means that v and f .v/ will have the 
same degree. So if one graph has a vertex of degree 4 and another does not, then 
they can’t be isomorphic. In fact, they can’t be isomorphic if the number of degree 
4 vertices in each of the graphs is not the same. 

Looking for preserved properties can make it easy to determine that two graphs 
are not isomorphic, or to actually find an isomorphism between them if there is 
one. In practice, it’s frequently easy to decide whether two graphs are isomorphic. 
However, no one has yet found a general procedure for determining whether two 
graphs are isomorphic that is guaranteed to run in polynomial time5 in jV j. 

Having such a procedure would be useful. For example, it would make it easy 
to search for a particular molecule in a database given the molecular bonds. On 

5I.e., in an amount of time that is upper-bounded by jV jc where c is a fixed number independent 
of jV j. 
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the other hand, knowing there is no such efficient procedure would also be valu­
able: secure protocols for encryption and remote authentication can be built on the 
hypothesis that graph isomorphism is computationally exhausting. 

5.1.4 Subgraphs 

Definition 5.1.4. A graph G1 D .V1; E1/ is said to be a subgraph of a graph 
G2 D .V2; E2/ if V1 � V2 and E1 � E2. 

For example, the empty graph on n nodes is a subgraph of Ln, Ln is a subgraph 
of Cn, and Cn is a subgraph of Kn. Also, the graph G D .V; E/ where 

V D fg; h; ig and E D f fh; ig g 

is a subgraph of the graph in Figure 5.1. On the other hand, any graph containing an 
edge fg; hg would not be a subgraph of the graph in Figure 5.1 because the graph 
in Figure 5.1 does not contain this edge. 

Note that since a subgraph is itself a graph, the endpoints of any edge in a sub­
graph must also be in the subgraph. In other words if G0 D .V 0; E 0/ is a subgraph 
of some graph G, and fvi ; vj g 2 E 0, then it must be the case that vi 2 V 0 and 
vj 2 V 0. 

5.1.5 Weighted Graphs 

Sometimes, we will use edges to denote a connection between a pair of nodes where 
the connection has a capacity or weight. For example, we might be interested in the 
capacity of an Internet fiber between a pair of computers, the resistance of a wire 
between a pair of terminals, the tension of a spring connecting a pair of devices in 
a dynamical system, the tension of a bond between a pair of atoms in a molecule, 
or the distance of a highway between a pair of cities. 

In such cases, it is useful to represent the system with an edge-weighted graph 
(aka a weighted graph). A weighted graph is the same as a simple graph except 
that we associate a real number (that is, the weight) with each edge in the graph. 
Mathematically speaking, a weighted graph consists of a graph G D .V; E/ and 
a weight function w W E ! R. For example, Figure 5.8 shows a weighted graph 
where the weight of edge fa; bg is 5. 

5.1.6 Adjacency Matrices 

There are many ways to represent a graph. We have already seen two ways: you 
can draw it, as in Figure 5.8 for example, or you can represent it with sets —as in 
G D .V; E/. Another common representation is with an adjacency matrix. 



127 

“mcs-ftl” — 2010/9/8 — 0:40 — page 127 — #133


5.1. Definitions 
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Figure 5.8 A 4-node weighted graph where the edge fa; bg has weight 5. 
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Figure 5.9 Examples of adjacency matrices. (a) shows the adjacency matrix for 
the graph in Figure 5.6(a) and (b) shows the adjacency matrix for the weighted 
graph in Figure 5.8. In each case, we set v1 D a, v2 D b, v3 D c, and v4 D d to 
construct the matrix. 

Definition 5.1.5. Given an n-node graph G D .V; E/ where V D fv1; v2; : : : ; vng, 
the adjacency matrix for G is the n � n matrix AG D faij g where 

aij D
1 if fvi ; vj g 2 E 

0 otherwise. 

If G is a weighted graph with edge weights given by w W E ! R, then the adja­
cency matrix for G is AG D faij g where 

aij D
w.fvi ; vj g/ if fvi ; vj g 2 E 

0 otherwise. 

For example, Figure 5.9 displays the adjacency matrices for the graphs shown in 
Figures 5.6(a) and 5.8 where v1 D a, v2 D b, v3 D c, and v4 D d . 
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5.2 Matching Problems 

We begin our study of graph theory by considering the scenario where the nodes 
in a graph represent people and the edges represent a relationship between pairs 
of people such as “likes”, “marries”, and so on. Now, you may be wondering 
what marriage has to do with computer science, and with good reason. It turns out 
that the techniques we will develop apply to much more general scenarios where 
instead of matching men to women, we need to match packets to paths in a network, 
applicants to jobs, or Internet traffic to web servers. And, as we will describe later, 
these techniques are widely used in practice. 

In our first example, we will show how graph theory can be used to debunk an 
urban legend about sexual practices in America. Yes, you read correctly. So, fasten 
your seat belt—who knew that math might actually be interesting! 

5.2.1 Sex in America 

On average, who has more opposite-gender partners: men or women? 
Sexual demographics have been the subject of many studies. In one of the largest, 

researchers from the University of Chicago interviewed a random sample of 2500 
Americans over several years to try to get an answer to this question. Their study, 
published in 1994, and entitled The Social Organization of Sexuality found that, on 
average, men have 74% more opposite-gender partners than women. 

Other studies have found that the disparity is even larger. In particular, ABC 
News claimed that the average man has 20 partners over his lifetime, and the aver­
age woman has 6, for a percentage disparity of 233%. The ABC News study, aired 
on Primetime Live in 2004, purported to be one of the most scientific ever done, 
with only a 2.5% margin of error. It was called “American Sex Survey: A peek 
between the sheets.” The promotion for the study is even better: 

A ground breaking ABC News “Primetime Live” survey finds a range 
of eye-popping sexual activities, fantasies and attitudes in this country, 
confirming some conventional wisdom, exploding some myths—and 
venturing where few scientific surveys have gone before. 

Probably that last part about going where few scientific surveys have gone before 
is pretty accurate! 

Yet again, in August, 2007, the N.Y. Times reported on a study by the National 
Center for Health Statistics of the U.S. Government showing that men had seven 
partners while women had four. 
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Anyway, whose numbers do you think are more accurate, the University of 
Chicago, ABC News, or the National Center for Health Statistics?—don’t answer; 
this is a setup question like “When did you stop beating your wife?” Using a little 
graph theory, we will now explain why none of these findings can be anywhere near 
the truth. 

Let’s model the question of heterosexual partners in graph theoretic terms. To 
do this, we’ll let G be the graph whose vertices, V , are all the people in America. 
Then we split V into two separate subsets: M , which contains all the males, and 
F , which contains all the females.6 We’ll put an edge between a male and a female 
iff they have been sexual partners. A possible subgraph of this graph is illustrated 
in Figure 5.10 with males on the left and females on the right. 

WM

Figure 5.10 A possible subgraph of the sex partners graph. 

Actually, G is a pretty hard graph to figure out, let alone draw. The graph is 
enormous: the US population is about 300 million, so jV j � 300M . In the United 
States, approximately 50.8% of the populatin is female and 49.2% is male, and 
so jM j 147:6M , and jF j 152:4M . And we don’t even have trustworthy � � 

estimates of how many edges there are, let alone exactly which couples are adja­
cent. But it turns out that we don’t need to know any of this to debunk the sex 
surveys—we just need to figure out the relationship between the average number 
of partners per male and partners per female. To do this, we note that every edge 
is incident to exactly one M vertex and one F vertex (remember, we’re only con­
sidering male-female relationships); so the sum of the degrees of the M vertices 
equals the number of edges, and the sum of the degrees of the F vertices equals the 

6For simplicity, we’ll ignore the possibility of someone being both, or neither, a man and a woman. 
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number of edges. So these sums are equal: X X 
deg.x/ D deg.y/: 

x2M y2F 

If we divide both sides of this equation by the product of the sizes of the two sets, 
jM j � jF j, we obtain �P � P ! 

x2M deg.x/ 1 y2F deg.y/ 1 
(5.1)

jM j 
�
jF j
D 

jF j 
�
jM j 

Notice that P 
deg.x/ x2M 

jM j

is simply the average degree of a node in M . This is the average number of 
opposite-gender partners for a male in America. Similarly, P 

deg.x/ x2F 

jF j 

is the average degree of a node in F , which is the average number of opposite-
gender partners for a female in America. Hence, Equation 5.1 implies that on 
average, an American male has jF j=jM j times as many opposite-gender partners 
as the average American female. 

From the Census Bureau reports, we know that there are slightly more females 
than males in America; in particular jF j=jM j is about 1.035. So we know that on 
average, males have 3.5% more opposite-gender partners than females. Of course, 
this statistic really says nothing about any sex’s promiscuity or selectivity. Remark­
ably, promiscuity is completely irrelevant in this analysis. That is because the ratio 
of the average number of partners is completely determined by the relative number 
of males and females. Collectively, males and females have the same number of 
opposite gender partners, since it takes one of each set for every partnership, but 
there are fewer males, so they have a higher ratio. This means that the University 
of Chicago, ABC, and the Federal Government studies are way off. After a huge 
effort, they gave a totally wrong answer. 

There’s no definite explanation for why such surveys are consistently wrong. 
One hypothesis is that males exaggerate their number of partners—or maybe fe­
males downplay theirs—but these explanations are speculative. Interestingly, the 
principal author of the National Center for Health Statistics study reported that she 
knew the results had to be wrong, but that was the data collected, and her job was 
to report it. 
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The same underlying issue has led to serious misinterpretations of other survey 
data. For example, a few years ago, the Boston Globe ran a story on a survey of 
the study habits of students on Boston area campuses. Their survey showed that on 
average, minority students tended to study with non-minority students more than 
the other way around. They went on at great length to explain why this “remarkable 
phenomenon” might be true. But it’s not remarkable at all—using our graph theory 
formulation, we can see that all it says is that there are fewer minority students than 
non-minority students, which is, of course what “minority” means. 

The Handshaking Lemma 

The previous argument hinged on the connection between a sum of degrees and the 
number edges. There is a simple connection between these quantities in any graph: 

Lemma 5.2.1 (The Handshaking Lemma). The sum of the degrees of the vertices 
in a graph equals twice the number of edges. 

Proof. Every edge contributes two to the sum of the degrees, one for each of its 
endpoints. � 

Lemma 5.2.1 is called the Handshake Lemma because if we total up the number 
of people each person at a party shakes hands with, the total will be twice the 
number of handshakes that occurred. 

5.2.2 Bipartite Matchings 

There were two kinds of vertices in the “Sex in America” graph—males and fe­
males, and edges only went between the two kinds. Graphs like this come up so 
frequently that they have earned a special name—they are called bipartite graphs. 

Definition 5.2.2. A bipartite graph is a graph together with a partition of its vertices 
into two sets, L and R, such that every edge is incident to a vertex in L and to a 
vertex in R. 

The bipartite matching problem is related to the sex-in-America problem that we 
just studied; only now the goal is to get everyone happily married. As you might 
imagine, this is not possible for a variety of reasons, not the least of which is the 
fact that there are more women in America than men. So, it is simply not possible 
to marry every woman to a man so that every man is married only once. 

But what about getting a mate for every man so that every woman is married 
only once? Is it possible to do this so that each man is paired with a woman that 
he likes? The answer, of course, depends on the bipartite graph that represents who 
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Mergatroid

Figure 5.11 A graph where an edge between a man and woman denotes that the 
man likes the woman. 

likes who, but the good news is that it is possible to find natural properties of the 
who-likes-who graph that completely determine the answer to this question. 

In general, suppose that we have a set of men and an equal-sized or larger set 
of women, and there is a graph with an edge between a man and a woman if the 
man likes the woman. Note that in this scenario, the “likes” relationship need not 
be symmetric, since for the time being, we will only worry about finding a mate for 
each man that he likes.7 (Later, we will consider the “likes” relationship from the 
female perspective as well.) For example, we might obtain the graph in Figure 5.11. 

In this problem, a matching will mean a way of assigning every man to a woman 
so that different men are assigned to different women, and a man is always assigned 
to a woman that he likes. For example, one possible matching for the men is shown 
in Figure 5.12. 

The Matching Condition 

A famous result known as Hall’s Matching Theorem gives necessary and sufficient 
conditions for the existence of a matching in a bipartite graph. It turns out to be a 
remarkably useful mathematical tool. 

We’ll state and prove Hall’s Theorem using man-likes-woman terminology. De­
fine the set of women liked by a given set of men to consist of all women liked by 
at least one of those men. For example, the set of women liked by Tom and John in 

7By the way, we do not mean to imply that marriage should or should not be of a heterosexual 
nature. Nor do we mean to imply that men should get their choice instead of women. It’s just that 
with bipartite graphs, the edges only connected male nodes to female nodes and there are fewer men 
in America. So please don’t take offense. 
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Chuck
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Mergatroid

Figure 5.12 One possible matching for the men is shown with bold edges. For 
example, John is matched with Jane. 

Figure 5.11 consists of Martha, Sarah, and Mergatroid. For us to have any chance 
at all of matching up the men, the following matching condition must hold: 

Every subset of men likes at least as large a set of women. 

For example, we can not find a matching if some set of 4 men like only 3 women. 
Hall’s Theorem says that this necessary condition is actually sufficient; if the match­
ing condition holds, then a matching exists. 

Theorem 5.2.3. A matching for a set of men M with a set of women W can be 
found if and only if the matching condition holds. 

Proof. First, let’s suppose that a matching exists and show that the matching condi­
tion holds. Consider an arbitrary subset of men. Each man likes at least the woman 
he is matched with. Therefore, every subset of men likes at least as large a set of 
women. Thus, the matching condition holds. 

Next, let’s suppose that the matching condition holds and show that a matching 
exists. We use strong induction on jM j, the number of men, on the predicate: 

P.m/ WWD for any set of m men M , if the matching condition holds 

for M , then there is a matching for M . 

Base Case (jM j D 1): If jM j D 1, then the matching condition implies that the

lone man likes at least one woman, and so a matching exists.


Inductive Step: We need to show that P.m/ IMPLIES P.m C 1/. Suppose that

jM j D m C 1 � 2.




134 

“mcs-ftl” — 2010/9/8 — 0:40 — page 134 — #140


Chapter 5 Graph Theory 

Case 1: Every proper subset8 of men likes a strictly larger set of women. In this 
case, we have some latitude: we pair an arbitrary man with a woman he 
likes and send them both away. The matching condition still holds for the 
remaining men and women since we have removed only one woman, so we 
can match the rest of the men by induction. 

Case 2: Some proper subset of men X � M likes an equal-size set of women 
Y � W . We match the men in X with the women in Y by induction and 
send them all away. We can also match the rest of the men by induction 
if we show that the matching condition holds for the remaining men and 
women. To check the matching condition for the remaining people, consider 
an arbitrary subset of the remaining men X 0 � .M � X/, and let Y 0 be 
the set of remaining women that they like. We must show that jX 0j � jY 0j. 
Originally, the combined set of men X [X 0 liked the set of women Y [ Y 0. 
So, by the matching condition, we know: 

jX [X 0
j � jY [ Y 0j 

We sent away jX jmen from the set on the left (leaving X 0) and sent away an 
equal number of women from the set on the right (leaving Y 0). Therefore, it 
must be that jX 0j � jY 0j as claimed. 

So in both cases, there is a matching for the men, which completes the proof of 
the Inductive step. The theorem follows by induction. � 

The proof of Theorem 5.2.3 gives an algorithm for finding a matching in a bipar­
tite graph, albeit not a very efficient one. However, efficient algorithms for finding a 
matching in a bipartite graph do exist. Thus, if a problem can be reduced to finding 
a matching, the problem can be solved from a computational perspective. 

A Formal Statement 

Let’s restate Theorem 5.2.3 in abstract terms so that you’ll not always be con­
demned to saying, “Now this group of men likes at least as many women. . . ” 

Definition 5.2.4. A matching in a graph, G, is a set of edges such that no two 
edges in the set share a vertex. A matching is said to cover a set, L, of vertices iff 
each vertex in L has an edge of the matching incident to it. A matching is said to 
be perfect if every node in the graph is incident to an edge in the matching. In any 
graph, the set N.S/, of neighbors of some set, S , of vertices is the set of all vertices 
adjacent to some vertex in S . That is, 

N.S/ WWD f r j fs; rg is an edge for some s 2 S g: 

8Recall that a subset A of B is proper if A ¤ B . 
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S is called a bottleneck if 
jS j > jN.S/j: 

Theorem 5.2.5 (Hall’s Theorem). Let G be a bipartite graph with vertex partition 
L; R. There is matching in G that covers L iff no subset of L is a bottleneck. 

An Easy Matching Condition 

The bipartite matching condition requires that every subset of men has a certain 
property. In general, verifying that every subset has some property, even if it’s easy 
to check any particular subset for the property, quickly becomes overwhelming 
because the number of subsets of even relatively small sets is enormous—over a 
billion subsets for a set of size 30. However, there is a simple property of vertex 
degrees in a bipartite graph that guarantees the existence of a matching. Namely, 
call a bipartite graph degree-constrained if vertex degrees on the left are at least as 
large as those on the right. More precisely, 

Definition 5.2.6. A bipartite graph G with vertex partition L, R where jLj � jRj
is degree-constrained if deg.l/ � deg.r/ for every l 2 L and r 2 R. 

For example, the graph in Figure 5.11 is degree constrained since every node on 
the left is adjacent to at least two nodes on the right while every node on the right 
is incident to at most two nodes on the left. 

Theorem 5.2.7. Let G be a bipartite graph with vertex partition L, R where jLj � 
jRj. If G is degree-constrained, then there is a matching that covers L. 

Proof. The proof is by contradiction. Suppose that G is degree constrained but that 
there is no matching that covers L. By Theorem 5.2.5, this means that there must 
be a bottleneck S � L. 

Let d be a value such that deg.l/ � x � deg.r/ for every l 2 L and r 2 R. 
Since every edge incident to a node in S is incident to a node in N.S/, we know 
that 

jN.S/jx � jS jx 

and thus that 
jN.S/j � jS j: 

This means that S is not a bottleneck, which is a contradiction. Hence G has a 
matching that covers L. � 

Regular graphs provide a large class of graphs that often arise in practice that are 
degree constrained. Hence, we can use Theorem 5.2.7 to prove that every regular 
bipartite graph has a perfect matching. This turns out to be a surprisingly useful 
result in computer science 
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Definition 5.2.8. A graph is said to be regular if every node has the same degree. 

Theorem 5.2.9. Every regular bipartite graph has a perfect matching. 

Proof. Let G be a regular bipartite graph with vertex partition L, R where jLj � 
jRj. Since regular graphs are degree-constrained, we know by Theorem 5.2.7 that 
there must be a matching in G that covers L. Since G is regular, we also know that 
jLj D jRj and thus the matching must also cover R. This means that every node 
in G is incident to an edge in the matching and thus G has a perfect matching. � 

5.2.3 The Stable Marriage Problem 

We next consider a version of the bipartite matching problem where there are an 
equal number of men and women, and where each person has preferences about 
who they would like to marry. In fact, we assume that each man has a complete list 
of all the women ranked according to his preferences, with no ties. Likewise, each 
woman has a ranked list of all of the men. 

The preferences don’t have to be symmetric. That is, Jennifer might like Brad 
best, but Brad doesn’t necessarily like Jennifer best. The goal is to marry everyone: 
every man must marry exactly one woman and vice-versa—no polygamy. More­
over, we would like to find a matching between men and women that is stable in 
the sense that there is no pair of people that prefer each other to their spouses. 

For example, suppose every man likes Angelina best, and every woman likes 
Brad best, but Brad and Angelina are married to other people, say Jennifer and Billy 
Bob. Now Brad and Angelina prefer each other to their spouses, which puts their 
marriages at risk: pretty soon, they’re likely to start spending late nights together 
working on problem sets! 

This unfortunate situation is illustrated in Figure 5.13, where the digits “1” and 
“2” near a man shows which of the two women he ranks first second, respectively, 
and similarly for the women. 

More generally, in any matching, a man and woman who are not married to each 
other and who like each other better than their spouses, is called a rogue couple. In 
the situation shown in Figure 5.13, Brad and Angelina would be a rogue couple. 

Having a rogue couple is not a good thing, since it threatens the stability of the 
marriages. On the other hand, if there are no rogue couples, then for any man and 
woman who are not married to each other, at least one likes their spouse better than 
the other, and so they won’t be tempted to start an affair. 

Definition 5.2.10. A stable matching is a matching with no rogue couples. 

The question is, given everybody’s preferences, how do you find a stable set of 
marriages? In the example consisting solely of the four people in Figure 5.13, we 
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Brad

Billy Bob

Jennifer

Angelina

1

2

2

1

1

2

2

1

Figure 5.13 Preferences for four people. Both men like Angelina best and both 
women like Brad best. 

could let Brad and Angelina both have their first choices by marrying each other. 
Now neither Brad nor Angelina prefers anybody else to their spouse, so neither 
will be in a rogue couple. This leaves Jen not-so-happily married to Billy Bob, but 
neither Jen nor Billy Bob can entice somebody else to marry them, and so there is 
a stable matching. 

Surprisingly, there is always a stable matching among a group of men and women. 
The surprise springs in part from considering the apparently similar “buddy” match­
ing problem. That is, if people can be paired off as buddies, regardless of gender, 
then a stable matching may not be possible. For example, Figure 5.14 shows a situ­
ation with a love triangle and a fourth person who is everyone’s last choice. In this 
figure Mergatroid’s preferences aren’t shown because they don’t even matter. Let’s 
see why there is no stable matching. 

Robin Bobby Joe

Alex

Mergatroid

3

3

2

1

1

2

312

Figure 5.14 Some preferences with no stable buddy matching. 

Lemma 5.2.11. There is no stable buddy matching among the four people in Fig­
ure 5.14. 
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Proof. We’ll prove this by contradiction. 
Assume, for the purposes of contradiction, that there is a stable matching. Then 

there are two members of the love triangle that are matched. Since preferences in 
the triangle are symmetric, we may assume in particular, that Robin and Alex are 
matched. Then the other pair must be Bobby-Joe matched with Mergatroid. 

But then there is a rogue couple: Alex likes Bobby-Joe best, and Bobby-Joe 
prefers Alex to his buddy Mergatroid. That is, Alex and Bobby-Joe are a rogue 
couple, contradicting the assumed stability of the matching. � 

So getting a stable buddy matching may not only be hard, it may be impossible. 
But when mens are only allowed to marry women, and vice versa, then it turns out 
that a stable matching can always be found.9 

The Mating Ritual 

The procedure for finding a stable matching involves a Mating Ritual that takes 
place over several days. The following events happen each day: 

Morning: Each woman stands on her balcony. Each man stands under the bal­
cony of his favorite among the women on his list, and he serenades her. If a man 
has no women left on his list, he stays home and does his math homework. 

Afternoon: Each woman who has one or more suitors serenading her, says to 
her favorite among them, “We might get engaged. Come back tomorrow.” To the 
other suitors, she says, “No. I will never marry you! Take a hike!” 

Evening: Any man who is told by a woman to take a hike, crosses that woman 
off his list. 

Termination condition: When a day arrives in which every woman has at most 
one suitor, the ritual ends with each woman marrying her suitor, if she has one. 

There are a number of facts about this Mating Ritual that we would like to prove: 

� The Ritual eventually reaches the termination condition. 

� Everybody ends up married. 

� The resulting marriages are stable. 

There is a Marriage Day 

It’s easy to see why the Mating Ritual has a terminal day when people finally get 
married. Every day on which the ritual hasn’t terminated, at least one man crosses 
a woman off his list. (If the ritual hasn’t terminated, there must be some woman 
serenaded by at least two men, and at least one of them will have to cross her off his 

9Once again, we disclaim any political statement here—its just the way that the math works out. 
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list). If we start with n men and n women, then each of the n men’s lists initially 
has n women on it, for a total of n2 list entries. Since no women ever gets added 
to a list, the total number of entries on the lists decreases every day that the Ritual 
continues, and so the Ritual can continue for at most n2 days. 

They All Live Happily Every After. . . 

We still have to prove that the Mating Ritual leaves everyone in a stable marriage. 
To do this, we note one very useful fact about the Ritual: if a woman has a favorite 
suitor on some morning of the Ritual, then that favorite suitor will still be serenad­
ing her the next morning—because his list won’t have changed. So she is sure to 
have today’s favorite man among her suitors tomorrow. That means she will be able 
to choose a favorite suitor tomorrow who is at least as desirable to her as today’s 
favorite. So day by day, her favorite suitor can stay the same or get better, never 
worse. This sounds like an invariant, and it is. 

Definition 5.2.12. Let P be the predicate: For every woman, w, and every man, 
m, if w is crossed off m’s list, then w has a suitor whom she prefers over m. 

Lemma 5.2.13. P is an invariant for The Mating Ritual. 

Proof. By induction on the number of days. 

Base Case: In the beginning (that is, at the end of day 0), every woman is on every 
list—no one has been crossed off and so P is vacuously true. 

Inductive Step: Assume P is true at the end of day d and let w be a woman that 
has been crossed off a man m’s list by the end of day d C 1. 

Case 1: w was crossed off m’s list on day d C 1. Then, w must have a suitor she 
prefers on day d C 1. 

Case 2: w was crossed off m’s list prior to day d C1. Since P is true at the end of 
day d , this means that w has a suitor she prefers to m on day d . She therefore 
has the same suitor or someone she prefers better at the end of day d C 1. 

In both cases, P is true at the end of day d C 1 and so P must be an invariant. � 

With Lemma 5.2.13 in hand, we can now prove: 

Theorem 5.2.14. Everyone is married by the Mating Ritual. 

Proof. By contradiction. Assume that it is the last day of the Mating Ritual and 
someone does not get married. Since there are an equal number of men and women, 
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and since bigamy is not allowed, this means that at least one man (call him Bob) 
and at least one woman do not get married. 

Since Bob is not married, he can’t be serenading anybody and so his list must 
be empty. This means that Bob has crossed every woman off his list and so, by 
invariant P , every woman has a suitor whom she prefers to Bob. Since it is the last 
day and every woman still has a suitor, this means that every woman gets married. 
This is a contradiction since we already argued that at least one woman is not 
married. Hence our assumption must be false and so everyone must be married. � 

Theorem 5.2.15. The Mating Ritual produces a stable matching. 

Proof. Let Brad and Jen be any man and woman, respectively, that are not married 
to each other on the last day of the Mating Ritual. We will prove that Brad and Jen 
are not a rogue couple, and thus that all marriages on the last day are stable. There 
are two cases to consider. 

Case 1: Jen is not on Brad’s list by the end. Then by invariant P , we know that 
Jen has a suitor (and hence a husband) that she prefers to Brad. So she’s not 
going to run off with Brad—Brad and Jen cannot be a rogue couple. 

Case 2: Jen is on Brad’s list. But since Brad is not married to Jen, he must be 
choosing to serenade his wife instead of Jen, so he must prefer his wife. So 
he’s not going to run off with Jen—once again, Brad and Jenn are not a rogue 
couple. � 

. . . Especially the Men 

Who is favored by the Mating Ritual, the men or the women? The women seem 
to have all the power: they stand on their balconies choosing the finest among 
their suitors and spurning the rest. What’s more, we know their suitors can only 
change for the better as the Ritual progresses. Similarly, a man keeps serenading 
the woman he most prefers among those on his list until he must cross her off, 
at which point he serenades the next most preferred woman on his list. So from 
the man’s perspective, the woman he is serenading can only change for the worse. 
Sounds like a good deal for the women. 

But it’s not! The fact is that from the beginning, the men are serenading their 
first choice woman, and the desirability of the woman being serenaded decreases 
only enough to ensure overall stability. The Mating Ritual actually does as well as 
possible for all the men and does the worst possible job for the women. 

To explain all this we need some definitions. Let’s begin by observing that while 
The Mating Ritual produces one stable matching, there may be other stable match­
ings among the same set of men and women. For example, reversing the roles of 
men and women will often yield a different stable matching among them. 
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But some spouses might be out of the question in all possible stable matchings. 
For example, given the preferences shown in Figure 5.13, Brad is just not in the 
realm of possibility for Jennifer, since if you ever pair them, Brad and Angelina 
will form a rogue couple. 

Definition 5.2.16. Given a set of preference lists for all men and women, one per­
son is in another person’s realm of possible spouses if there is a stable matching 
in which the two people are married. A person’s optimal spouse is their most pre­
ferred person within their realm of possibility. A person’s pessimal spouse is their 
least preferred person in their realm of possibility. 

Everybody has an optimal and a pessimal spouse, since we know there is at least 
one stable matching, namely, the one produced by the Mating Ritual. Now here is 
the shocking truth about the Mating Ritual: 

Theorem 5.2.17. The Mating Ritual marries every man to his optimal spouse. 

Proof. By contradiction. Assume for the purpose of contradiction that some man 
does not get his optimal spouse. Then there must have been a day when he crossed 
off his optimal spouse—otherwise he would still be serenading (and would ulti­
mately marry) her or some even more desirable woman. 

By the Well Ordering Principle, there must be a first day when a man (call him 
“Keith”) crosses off his optimal spouse (call her Nicole). According to the rules of 
the Ritual, Keith crosses off Nicole because Nicole has a preferred suitor (call him 
Tom), so 

Nicole prefers Tom to Keith. (�) 

Since this is the first day an optimal woman gets crossed off, we know that Tom 
had not previously crossed off his optimal spouse, and so 

Tom ranks Nicole at least as high as his optimal spouse. (��) 

By the definition of an optimal spouse, there must be some stable set of marriages in 
which Keith gets his optimal spouse, Nicole. But then the preferences given in (�) 
and (��) imply that Nicole and Tom are a rogue couple within this supposedly 
stable set of marriages (think about it). This is a contradiction. � 

Theorem 5.2.18. The Mating Ritual marries every woman to her pessimal spouse. 

Proof. By contradiction. Assume that the theorem is not true. Hence there must 
be a stable set of marriages M where some woman (call her Nicole) is married to 
a man (call him Tom) that she likes less than her spouse in The Mating Ritual (call 
him Keith). This means that 

Nicole prefers Keith to Tom. (+) 
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By Theorem 5.2.17 and the fact that Nicole and Keith are married in the Mating 
Ritual, we know that 

Keith prefers Nicole to his spouse in M. (++) 

This means that Keith and Nicole form a rogue couple in M, which contradicts the 
stability of M. � 

Applications 

The Mating Ritual was first announced in a paper by D. Gale and L.S. Shapley in 
1962, but ten years before the Gale-Shapley paper was published, and unknown 
by them, a similar algorithm was being used to assign residents to hospitals by the 
National Resident Matching Program (NRMP)10. The NRMP has, since the turn 
of the twentieth century, assigned each year’s pool of medical school graduates to 
hospital residencies (formerly called “internships”) with hospitals and graduates 
playing the roles of men and women. (In this case, there may be multiple women 
married to one man, a scenario we consider in the problem section at the end of the 
chapter.). Before the Ritual-like algorithm was adopted, there were chronic disrup­
tions and awkward countermeasures taken to preserve assignments of graduates to 
residencies. The Ritual resolved these problems so successfully, that it was used 
essentially without change at least through 1989.11 

The Internet infrastructure company, Akamai, also uses a variation of the Mating 
Ritual to assign web traffic to its servers. In the early days, Akamai used other com­
binatorial optimization algorithms that got to be too slow as the number of servers 
(over 65,000 in 2010) and requests (over 800 billion per day) increased. Akamai 
switched to a Ritual-like approach since it is fast and can be run in a distributed 
manner. In this case, web requests correspond to women and web servers corre­
spond to men. The web requests have preferences based on latency and packet loss, 
and the web servers have preferences based on cost of bandwidth and collocation. 

Not surprisingly, the Mating Ritual is also used by at least one large online dating 
agency. Even here, there is no serenading going on—everything is handled by 
computer. 

10Of course, there is no serenading going on in the hospitals—the preferences are submitted to a 
program and the whole process is carried out by a computer. 

11Much more about the Stable Marriage Problem can be found in the very readable mathematical 
monograph by Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structure and 
Algorithms, MIT Press, Cambridge, Massachusetts, 1989, 240 pp. 

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676
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6:002

6:170

6:003

6:0426:041

Figure 5.15 A scheduling graph for five exams. Exams connected by an edge 
cannot be given at the same time. 

5.3 Coloring 

In Section 5.2, we used edges to indicate an affinity between a pair of nodes. We 
now consider situations where it is useful to use edges to represent a conflict be­
tween a pair of nodes. For example, consider the following exam scheduling prob­
lem. 

5.3.1 An Exam Scheduling Problem 

Each term, the MIT Schedules Office must assign a time slot for each final exam. 
This is not easy, because some students are taking several classes with finals, and 
(even at MIT) a student can take only one test during a particular time slot. The 
Schedules Office wants to avoid all conflicts. Of course, you can make such a 
schedule by having every exam in a different slot, but then you would need hun­
dreds of slots for the hundreds of courses, and the exam period would run all year! 
So, the Schedules Office would also like to keep exam period short. 

The Schedules Office’s problem is easy to describe as a graph. There will be a 
vertex for each course with a final exam, and two vertices will be adjacent exactly 
when some student is taking both courses. For example, suppose we need to sched­
ule exams for 6.041, 6.042, 6.002, 6.003 and 6.170. The scheduling graph might 
appear as in Figure 5.15. 

6.002 and 6.042 cannot have an exam at the same time since there are students in 
both courses, so there is an edge between their nodes. On the other hand, 6.042 and 
6.170 can have an exam at the same time if they’re taught at the same time (which 
they sometimes are), since no student can be enrolled in both (that is, no student 
should be enrolled in both when they have a timing conflict). 
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red

blue

green

bluegreen

Figure 5.16 A 3-coloring of the exam graph from Figure 5.15. 

We next identify each time slot with a color. For example, Monday morning 
is red, Monday afternoon is blue, Tuesday morning is green, etc. Assigning an 
exam to a time slot is then equivalent to coloring the corresponding vertex. The 
main constraint is that adjacent vertices must get different colors—otherwise, some 
student has two exams at the same time. Furthermore, in order to keep the exam 
period short, we should try to color all the vertices using as few different colors as 
possible. As shown in Figure 5.16, three colors suffice for our example. 

The coloring in Figure 5.16 corresponds to giving one final on Monday morning 
(red), two Monday afternoon (blue), and two Tuesday morning (green). Can we use 
fewer than three colors? No! We can’t use only two colors since there is a triangle 
in the graph, and three vertices in a triangle must all have different colors. 

This is an example of a graph coloring problem: given a graph G, assign colors 
to each node such that adjacent nodes have different colors. A color assignment 
with this property is called a valid coloring of the graph—a “coloring,” for short. 
A graph G is k-colorable if it has a coloring that uses at most k colors. 

Definition 5.3.1. The minimum value of k for which a graph G has a valid k-
coloring is called its chromatic number, �.G/. 

In general, trying to figure out if you can color a graph with a fixed number of 
colors can take a long time. It’s a classic example of a problem for which no fast 
algorithms are known. It is easy to check if a coloring works, but it seems really 
hard to find it. (If you figure out how, then you can get a $1 million Clay prize.) 

5.3.2 Degree-Bounded Coloring 

There are some simple graph properties that give useful upper bounds on the chro­
matic number. For example, if the graph is bipartite, then we can color it with 2 
colors (one color for the nodes in the “left” set and a second color for the nodes 
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in the “right” set). In fact, if the graph has any edges at all, then being bipartite is 
equivalent to being 2-colorable. 

Alternatively, if the graph is planar, then the famous 4-Color Theorem says that 
the graph is 4-colorable. This is a hard result to prove, but we will come close in 
Section 5.8 where we define planar graphs and prove that they are 5-colorable. 

The chromatic number of a graph can also be shown to be small if the vertex 
degrees of the graph are small. In particular, if we have an upper bound on the 
degrees of all the vertices in a graph, then we can easily find a coloring with only 
one more color than the degree bound. 

Theorem 5.3.2. A graph with maximum degree at most k is .k C 1/-colorable. 

The natural way to try to prove this theorem is to use induction on k. Unfor­
tunately, this approach leads to disaster. It is not that it is impossible, just that it 
is extremely painful and would ruin your week if you tried it on an exam. When 
you encounter such a disaster when using induction on graphs, it is usually best to 
change what you are inducting on. In graphs, typical good choices for the induction 
parameter are n, the number of nodes, or e, the number of edges. 

Proof of Theorem 5.3.2. We use induction on the number of vertices in the graph, 
which we denote by n. Let P.n/ be the proposition that an n-vertex graph with 
maximum degree at most k is .k C 1/-colorable. 

Base case (n D 1): A 1-vertex graph has maximum degree 0 and is 1-colorable, so 
P.1/ is true. 

Inductive step: Now assume that P.n/ is true, and let G be an .nC1/-vertex graph 
with maximum degree at most k. Remove a vertex v (and all edges incident to it), 
leaving an n-vertex subgraph, H . The maximum degree of H is at most k, and so 
H is .k C 1/-colorable by our assumption P.n/. Now add back vertex v. We can 
assign v a color (from the set of k C 1 colors) that is different from all its adjacent 
vertices, since there are at most k vertices adjacent to v and so at least one of the 
k C 1 colors is still available. Therefore, G is .k C 1/-colorable. This completes 
the inductive step, and the theorem follows by induction. � 

Sometimes k C 1 colors is the best you can do. For example, in the complete 
graph, Kn, every one of its n vertices is adjacent to all the others, so all n must be 
assigned different colors. Of course n colors is also enough, so �.Kn/ D n. In 
this case, every node has degree k D n � 1 and so this is an example where Theo­
rem 5.3.2 gives the best possible bound. By a similar argument, we can show that 
Theorem 5.3.2 gives the best possible bound for any graph with degree bounded by 
k that has KkC1 as a subgraph. 
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Figure 5.17 A 7-node star graph. 

But sometimes k C 1 colors is far from the best that you can do. For example, 
the n-node star graph shown in Figure 5.17 has maximum degree n � 1 but can be 
colored using just 2 colors. 

5.3.3 Why coloring? 

One reason coloring problems frequently arise in practice is because scheduling 
conflicts are so common. For example, at Akamai, a new version of software is 
deployed over each of 75,000 servers every few days. The updates cannot be done 
at the same time since the servers need to be taken down in order to deploy the 
software. Also, the servers cannot be handled one at a time, since it would take 
forever to update them all (each one takes about an hour). Moreover, certain pairs 
of servers cannot be taken down at the same time since they have common critical 
functions. This problem was eventually solved by making a 75,000-node conflict 
graph and coloring it with 8 colors—so only 8 waves of install are needed! 

Another example comes from the need to assign frequencies to radio stations. If 
two stations have an overlap in their broadcast area, they can’t be given the same 
frequency. Frequencies are precious and expensive, so you want to minimize the 
number handed out. This amounts to finding the minimum coloring for a graph 
whose vertices are the stations and whose edges connect stations with overlapping 
areas. 

Coloring also comes up in allocating registers for program variables. While a 
variable is in use, its value needs to be saved in a register. Registers can be reused 
for different variables but two variables need different registers if they are refer­
enced during overlapping intervals of program execution. So register allocation is 
the coloring problem for a graph whose vertices are the variables; vertices are ad­
jacent if their intervals overlap, and the colors are registers. Once again, the goal is 
to minimize the number of colors needed to color the graph. 

Finally, there’s the famous map coloring problem stated in Proposition 1.3.4. 
The question is how many colors are needed to color a map so that adjacent ter­
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ritories get different colors? This is the same as the number of colors needed to 
color a graph that can be drawn in the plane without edges crossing. A proof that 
four colors are enough for planar graphs was acclaimed when it was discovered 
about thirty years ago. Implicit in that proof was a 4-coloring procedure that takes 
time proportional to the number of vertices in the graph (countries in the map). 
Surprisingly, it’s another of those million dollar prize questions to find an efficient 
procedure to tell if a planar graph really needs four colors or if three will actually 
do the job. (It’s always easy to tell if an arbitrary graph is 2-colorable.) In Sec­
tion 5.8, we’ll develop enough planar graph theory to present an easy proof that all 
planar graphs are 5-colorable. 

5.4 Getting from A to B in a Graph 

5.4.1 Paths and Walks 

Definition 5.4.1. A walk12 in a graph, G, is a sequence of vertices 

v0; v1; : : : ; vk 

and edges 
fv0; v1g; fv1; v2g; : : : ; fvk�1; vkg 

such that fvi ; viC1g is an edge of G for all i where 0 � i < k . The walk is said to 
start at v0 and to end at vk , and the length of the walk is defined to be k. An edge, 
fu; vg, is traversed n times by the walk if there are n different values of i such that 
fvi ; viC1g D fu; vg. A path is a walk where all the vi ’s are different, that is, i ¤ j 
implies vi ¤ vj . For simplicity, we will refer to paths and walks by the sequence 
of vertices.13 

For example, the graph in Figure 5.18 has a length 6 path a, b, c, d , e, f , g. 
This is the longest path in the graph. Of course, the graph has walks with arbitrarily 
large lengths; for example, a, b, a, b, a, b, . . . . 

The length of a walk or path is the total number of times it traverses edges, which 
is one less than its length as a sequence of vertices. For example, the length 6 path 
a, b, c, d , e, f , g contains a sequence of 7 vertices. 

12Some texts use the word path for our definition of walk and the term simple path for our definition 
of path. 

13This works fine for simple graphs since the edges in a walk are completely determined by the 
sequence of vertices and there is no ambiguity. For graphs with multiple edges, we would need to 
specify the edges as well as the nodes. 
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a

b

c

d e

f

g h

Figure 5.18 A graph containing a path a, b, c, d , e, f , g of length 6. 

5.4.2 Finding a Path 

Where there’s a walk, there’s a path. This is sort of obvious, but it’s easy enough to 
prove rigorously using the Well Ordering Principle. 

Lemma 5.4.2. If there is a walk from a vertex u to a vertex v in a graph, then there 
is a path from u to v. 

Proof. Since there is a walk from u to v, there must, by the Well-ordering Principle, 
be a minimum length walk from u to v. If the minimum length is zero or one, this 
minimum length walk is itself a path from u to v. Otherwise, there is a minimum 
length walk 

v0; v1; : : : ; vk 

from u D v0 to v D vk where k � 2. We claim this walk must be a path. To 
prove the claim, suppose to the contrary that the walk is not a path; that is, some 
vertex on the walk occurs twice. This means that there are integers i; j such that 
0 � i < j � k with vi D vj . Then deleting the subsequence 

viC1; : : : ; vj 

yields a strictly shorter walk 

v0; v1; : : : ; vi ; vj C1; vj C2; : : : ; vk 

from u to v, contradicting the minimality of the given walk. � 

Actually, we proved something stronger: 

Corollary 5.4.3. For any walk of length k in a graph, there is a path of length at 
most k with the same endpoints. Moreover, the shortest walk between a pair of 
vertices is, in fact, a path. 
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v2

v3

v1

v4

1 CCA 
0 BB@ 

1 CCA

Figure 5.19 A graph for which there are 5 walks of length 3 from v1 to v4. 
The walks are .v1; v2; v1; v4/, .v1; v3; v1; v4/, .v1; v4; v1; v4/, .v1; v2; v3; v4/, and 
.v1; v4; v3; v4/. 

0 BB@

5.4.3 Numbers of Walks 

Given a pair of nodes that are connected by a walk of length k in a graph, there are 
often many walks that can be used to get from one node to the other. For example, 
there are 5 walks of length 3 that start at v1 and end at v4 in the graph shown in 

1 CCA

Figure 5.19. 
There is a surprising relationship between the number of walks of length k be­

tween a pair of nodes in a graph G and the kth power of the adjacency matrix AG 

for G. The relationship is captured in the following theorem. 

0 BB@ 

Theorem 5.4.4. Let G D .V; E/ be an n-node graph with V D fv1; v2; : : : ; vng

and let AG D faij g denote the adjacency matrix for G. Let a .k/ denote the .i; j /­ij 
entry of the kth power of AG . Then the number of walks of length k between vi 

and vj is a .k/ .ij 

In other words, we can determine the number of walks of length k between any 
pair of nodes simply by computing the kth power of the adjacency matrix! That’s 
pretty amazing. 

For example, the first three powers of the adjacency matrix for the graph in Fig­
ure 5.19 are: 

0 1 1 1 3 1 2 1 4 5 5 5 

A D 
1

1

1

0

0

1

1

0 
A2 
D 

2

1

1

2

3

1

1

2 
A3 
D 

5

5 
5

2 
4

5 
5

2 

1 0 1 0 1 2 1 2 5 2 5 2 

.3/Sure enough, the .1; 4/ coordinate of A3 is a14 D 5, which is the number of 
length 3 walks from v1 to v4. And a .3/ 

D 2, which is the number of length 3 walks 24 
from v2 to v4. By proving the theorem, we’ll discover why it is true and thereby 
uncover the relationship between matrix multiplication and numbers of walks. 
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Proof of Theorem 5.4.4. The proof is by induction on k. We will let P.k/ be the 
predicate that the theorem is true for k. Let P .k/ denote the number of walks of ij 
length k between vi and vj . Then P.k/ is the predicate 

8i; j 2 Œ1; n�: P .k/ 
a .k/ 

: (5.2)ij D ij 

Base Case (k D 1): There are two cases to consider: 

Case 1: fvi ; vj g 2 E. Then Pij 
.1/ 
D 1 since there is precisely one walk of length 1 

between vi and vj . Moreover, fvi ; vj g 2 E means that a .1/ 
1. So, ij D aij D

.1/ .1/
Pij D aij in this case. 

Case 2: fvi ; vj g … E. Then Pij 
.1/ 
D 0 since there cannot be any walks of length 1 

between vi and vj . Moreover, fvi ; vj g … E means that aij D 0. So, Pij 
.1/ 
D 

a .1/ in this case as well. ij 

Hence, P.1/ must be true. 

Inductive Step: Assume P.k/ is true. In other words, assume that equation 5.2 
holds. 

We can group (and thus count the number of) walks of length k C1 from vi to vj 

according to the first edge in the walk (call it fvi ; vt g). This means that 

t WfviX;vt g2E 

Pij 
.kC1/ 

D Ptj 
.k/ (5.3) 

where the sum is over all t such that fvi ; vt g is an edge. Using the fact that aij D 1 
if fvi ; vt g 2 E and ait D 0 otherwise, we can rewrite Equation 5.3 as follows: 

nX 
Pij 

.kC1/ 
D ait Ptj 

.k/ 
: 

tD1 

.k/ .k/ By the inductive hypothesis, Ptj D atj and thus 

nX 
.kC1/ .k/ 

Pij D tj :ait a 
tD1 

But the formula for matrix multiplication gives that 
nX 

.kC1/ .k/

aij D tj :
ait a

tD1 

.kC1/ .kC1/and so we must have Pij D aij for all i; j 2 Œ1; n�. Hence P.k C 1/ is true 
and the induction is complete. � 
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5.4.4 Shortest Paths 

Although the connection between the power of the adjacency matrix and the num­
ber of walks is cool (at least if you are a mathematician), the problem of counting 
walks does not come up very often in practice. Much more important is the problem 
of finding the shortest path between a pair of nodes in a graph. 

There is good news and bad news to report on this front. The good news is that 
it is not very hard to find a shortest path. The bad news is that you can’t win one of 
those million dollar prizes for doing it. 

In fact, there are several good algorithms known for finding a Shortest Path be­
tween a pair of nodes. The simplest to explain (but not the fastest) is to compute the 
powers of the adjacency matrix one by one until the value of a .k/ exceeds 0. That’s ij 
because Theorem 5.4.4 and Corollary 5.4.3 imply that the length of the shortest 
path between vi and vj will be the smallest value of k for which a.k/ 

> 0.ij 

Paths in Weighted Graphs 

The problem of computing shortest paths in a weighted graph frequently arises in 
practice. For example, when you drive home for vacation, you usually would like 
to take the shortest route. 

Definition 5.4.5. Given a weighted graph, the length of a path in the graph is the 
sum of the weights of the edges in the path. 

Finding shortest paths in weighted graphs is not a lot harder than finding shortest 
paths in unweighted graphs. We won’t show you how to do it here, but you will 
study algorithms for finding shortest paths if you take an algorithms course. Not 
surprisingly, the proof of correctness will use induction. 

5.5 Connectivity 

Definition 5.5.1. Two vertices in a graph are said to be connected if there is a path 
that begins at one and ends at the other. By convention, every vertex is considered 
to be connected to itself by a path of length zero. 

Definition 5.5.2. A graph is said to be connected when every pair of vertices are 
connected. 

5.5.1 Connected Components 

Being connected is usually a good property for a graph to have. For example, it 
could mean that it is possible to get from any node to any other node, or that it is 
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possible to communicate between any pair of nodes, depending on the application. 
But not all graphs are connected. For example, the graph where nodes represent 

cities and edges represent highways might be connected for North American cities, 
but would surely not be connected if you also included cities in Australia. The 
same is true for communication networks like the Internet—in order to be protected 
from viruses that spread on the Internet, some government networks are completely 
isolated from the Internet. 

Figure 5.20 One graph with 3 connected components. 

For example, the diagram in Figure 5.20 looks like a picture of three graphs, 
but is intended to be a picture of one graph. This graph consists of three pieces 
(subgraphs). Each piece by itself is connected, but there are no paths between ver­
tices in different pieces. These connected pieces of a graph are called its connected 
components. 

Definition 5.5.3. A connected component is a subgraph of a graph consisting of 
some vertex and every node and edge that is connected to that vertex. 

So a graph is connected iff it has exactly one connected component. At the other 
extreme, the empty graph on n vertices has n connected components. 

5.5.2 k-Connected Graphs 

If we think of a graph as modeling cables in a telephone network, or oil pipelines, or 
electrical power lines, then we not only want connectivity, but we want connectivity 
that survives component failure. A graph is called k-edge connected if it takes at 
least k “edge-failures” to disconnect it. More precisely: 

Definition 5.5.4. Two vertices in a graph are k-edge connected if they remain con­
nected in every subgraph obtained by deleting k � 1 edges. A graph with at least 
two vertices is k-edge connected14 if every two of its vertices are k-edge connected. 

14The corresponding definition of connectedness based on deleting vertices rather than edges is 
common in Graph Theory texts and is usually simply called “k-connected” rather than “k-vertex 
connected.” 
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So 1-edge connected is the same as connected for both vertices and graphs. An­
other way to say that a graph is k-edge connected is that every subgraph obtained 
from it by deleting at most k � 1 edges is connected. For example, in the graph in 
Figure 5.18, vertices c and e are 3-edge connected, b and e are 2-edge connected, 
g and e are 1-edge connected, and no vertices are 4-edge connected. The graph 
as a whole is only 1-edge connected. The complete graph, Kn, is .n � 1/-edge 
connected. 

If two vertices are connected by k edge-disjoint paths (that is, no two paths 
traverse the same edge), then they are obviously k-edge connected. A fundamental 
fact, whose ingenious proof we omit, is Menger’s theorem which confirms that the 
converse is also true: if two vertices are k-edge connected, then there are k edge-
disjoint paths connecting them. It even takes some ingenuity to prove this for the 
case k D 2. 

5.5.3 The Minimum Number of Edges in a Connected Graph 

The following theorem says that a graph with few edges must have many connected 
components. 

Theorem 5.5.5. Every graph with v vertices and e edges has at least v � e con­
nected components. 

Of course for Theorem 5.5.5 to be of any use, there must be fewer edges than 
vertices. 

Proof. We use induction on the number of edges, e. Let P.e/ be the proposition 
that 

for every v, every graph with v vertices and e edges has at least v � e 
connected components. 

Base case:(e D 0). In a graph with 0 edges and v vertices, each vertex is itself a 
connected component, and so there are exactly v D v � 0 connected components. 
So P.e/ holds. 

Inductive step: Now we assume that the induction hypothesis holds for every e-
edge graph in order to prove that it holds for every .eC1/-edge graph, where e � 0. 
Consider a graph, G, with e C 1 edges and v vertices. We want to prove that G has 
at least v � .e C 1/ connected components. To do this, remove an arbitrary edge 
fa; bg and call the resulting graph G0. By the induction assumption, G0 has at least 
v � e connected components. Now add back the edge fa; bg to obtain the original 
graph G. If a and b were in the same connected component of G0, then G has the 
same connected components as G0, so G has at least v�e > v�.eC1/ components. 
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Figure 5.21 A counterexample graph to the False Claim. 

Otherwise, if a and b were in different connected components of G0, then these two 
components are merged into one component in G, but all other components remain 
unchanged, reducing the number of components by 1. Therefore, G has at least 
.v �e/ �1 D v � .e C1/ connected components. So in either case, P.e C1/ holds. 
This completes the Inductive step. The theorem now follows by induction. � 

Corollary 5.5.6. Every connected graph with v vertices has at least v � 1 edges. 

A couple of points about the proof of Theorem 5.5.5 are worth noticing. First, 
we used induction on the number of edges in the graph. This is very common in 
proofs involving graphs, as is induction on the number of vertices. When you’re 
presented with a graph problem, these two approaches should be among the first 
you consider. 

The second point is more subtle. Notice that in the inductive step, we took an 
arbitrary .nC1/-edge graph, threw out an edge so that we could apply the induction 
assumption, and then put the edge back. You’ll see this shrink-down, grow-back 
process very often in the inductive steps of proofs related to graphs. This might 
seem like needless effort; why not start with an n-edge graph and add one more to 
get an .n C 1/-edge graph? That would work fine in this case, but opens the door 
to a nasty logical error called buildup error. 

5.5.4 Build-Up Error 

False Claim. If every vertex in a graph has degree at least 1, then the graph is 
connected. 

There are many counterexamples; for example, see Figure 5.21. 

False proof. We use induction. Let P.n/ be the proposition that if every vertex in 
an n-vertex graph has degree at least 1, then the graph is connected. 

Base case: There is only one graph with a single vertex and has degree 0. There­
fore, P.1/ is vacuously true, since the if-part is false. 
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x

y

z

n-node 
connected 
graph

Figure 5.22 Adding a vertex x with degree at least 1 to a connected n-node graph. 

Inductive step: We must show that P.n/ implies P.n C 1/ for all n � 1. Consider 
an n-vertex graph in which every vertex has degree at least 1. By the assump­
tion P.n/, this graph is connected; that is, there is a path between every pair of 
vertices. Now we add one more vertex x to obtain an .n C 1/-vertex graph as 
shown in Figure 5.22. 

All that remains is to check that there is a path from x to every other vertex z. 
Since x has degree at least one, there is an edge from x to some other vertex; call 
it y. Thus, we can obtain a path from x to z by adjoining the edge fx; yg to the 
path from y to z. This proves P.n C 1/. 

By the principle of induction, P.n/ is true for all n � 1, which proves the 
theorem � 

Uh-oh. . . this proof looks fine! Where is the bug? It turns out that the faulty as­
sumption underlying this argument is that every .nC1/-vertex graph with minimum 
degree 1 can be obtained from an n-vertex graph with minimum degree 1 by adding 
1 more vertex. Instead of starting by considering an arbitrary .n C 1/-node graph, 
this proof only considered .n C 1/-node graphs that you can make by starting with 
an n-node graph with minimum degree 1. 

The counterexample in Figure 5.21 shows that this assumption is false; there 
is no way to build the 4-vertex graph in Figure 5.21 from a 3-vertex graph with 
minimum degree 1. Thus the first error in the proof is the statement “This proves 
P.n C 1/.” 

This kind of flaw is known as “build-up error.” Usually, build-up error arises 
from a faulty assumption that every size n C 1 graph with some property can be 
“built up” from a size n graph with the same property. (This assumption is cor­
rect for some properties, but incorrect for others—such as the one in the argument 
above.) 
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One way to avoid an accidental build-up error is to use a “shrink down, grow 
back” process in the inductive step; that is, start with a size n C 1 graph, remove 
a vertex (or edge), apply the inductive hypothesis P.n/ to the smaller graph, and 
then add back the vertex (or edge) and argue that P.n C 1/ holds. Let’s see what 
would have happened if we’d tried to prove the claim above by this method: 

Revised inductive step: We must show that P.n/ implies P.n C 1/ for all n � 1. 
Consider an .n C 1/-vertex graph G in which every vertex has degree at least 1. 
Remove an arbitrary vertex v, leaving an n-vertex graph G0 in which every vertex 
has degree. . . uh oh! 

The reduced graph G0 might contain a vertex of degree 0, making the inductive 
hypothesis P.n/ inapplicable! We are stuck—and properly so, since the claim is 
false! 

Always use shrink-down, grow-back arguments and you’ll never fall into this 
trap. 

5.6 Around and Around We Go 

5.6.1 Cycles and Closed Walks 

Definition 5.6.1. A closed walk15 in a graph G is a sequence of vertices 

v0; v1; : : : ; vk 

and edges 
fv0; v1g; fv1; v2g; : : : ; fvk�1; vkg 

where v0 is the same node as vk and fvi ; viC1g is an edge of G for all i where 
0 � i < k. The length of the closed walk is k. A closed walk is said to be a cycle 
if k � 3 and v0, v1, . . . , vk�1 are all different. 

For example, b, c, d , e, c, b is a closed walk of length 5 in the graph shown in 
Figure 5.18. It is not a cycle since it contains node c twice. On the other hand, c, 
d , e, c is a cycle of length 3 in this graph since every node appears just once. 

There are many ways to represent the same closed walk or cycle. For example, 
b, c, d , e, c, b is the same as c, d , e, c, b, c (just starting at node c instead of 
node b) and the same as b, c, e, d , c, b (just reversing the direction). 

15Some texts use the word cycle for our definition of closed walk and simple cycle for our definition 
of cycle. 
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Cycles are similar to paths, except that the last node is the first node and the 
notion of first and last does not matter. Indeed, there are many possible vertex 
orders that can be used to describe cycles and closed walks, whereas walks and 
paths have a prescribed beginning, end, and ordering. 

5.6.2 Odd Cycles and 2-Colorability 

We have already seen that determining the chromatic number of a graph is a chal­
lenging problem. There is a special case where this problem is very easy; namely, 
the case where every cycle in the graph has even length. In this case, the graph 
is 2-colorable! Of course, this is optimal if the graph has any edges at all. More 
generally, we will prove 

Theorem 5.6.2. The following properties of a graph are equivalent (that is, if the 
graph has any one of the properties, then it has all of the properties): 

1. The graph is bipartite. 

2. The graph is 2-colorable. 

3. The graph does not contain any cycles with odd length. 

4. The graph does not contain any closed walks with odd length. 

Proof. We will show that property 1 IMPLIES property 2, property 2 IMPLIES prop­
erty 3, property 3 IMPLIES property 4, and property 4 IMPLIES property 1. This will 
show that all four properties are equivalent by repeated application of Rule 2.1.2 in 
Section 2.1.2. 

1 IMPLIES 2 Assume that G D .V; E/ is a bipartite graph. Then V can be parti­
tioned into two sets L and R so that no edge connects a pair of nodes in L 
nor a pair of nodes in R. Hence, we can use one color for all the nodes in L 
and a second color for all the nodes in R. Hence �.G/ D 2. 

2 IMPLIES 3 Let G D .V; E/ be a 2-colorable graph and 

v0; v1; : : : ; vkC WWD

be any cycle in G. Consider any 2-coloring for the nodes of G. Since 
fvi ; viC1g 2 E, vi and viC1 must be differently colored for 0 � i < k. 
Hence v0, v2, v4, . . . , have one color and v1, v3, v5, . . . , have the other 
color. Since C is a cycle, vk is the same node as v0, which means they must 
have the same color, and so k must be an even number. This means that 
C has even length. 
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3 IMPLIES 4 The proof is by contradiction. Assume for the purposes of contradic­
tion that G is a graph that does not contain any cycles with odd length (that 
is, G satisfies Property 3) but that G does contain a closed walk with odd 
length (that is, G does not satisfy Property 4). 

Let 
v0; v1; v2; : : : ; vkw WWD

be the shortest closed walk with odd length in G. Since G has no odd-length 
cycles, w cannot be a cycle. Hence vi D vj for some 0 � i < j < k. This 
means that w is the union of two closed walks: 

v0; v1; : : : ; vi ; vj C1; vj C2; : : : ; vk 

and 
vi ; viC1; : : : ; vj : 

Since w has odd length, one of these two closed walks must also have odd 
length and be shorter than w. This contradicts the minimality of w. Hence 3 
IMPLIES 4. 

4 IMPLIES 1 Once again, the proof is by contradiction. Assume for the purposes 
of contradictin that G is a graph without any closed walks with odd length 
(that is, G satisfies Property 4) but that G is not bipartite (that is, G does not 
satisfy Property 1). 

Since G is not bipartite, it must contain a connected component G0 D .V 0; E 0/ 
that is not bipartite. Let v be some node in V 0. For every node u 2 V 0, define 

dist.u/ WWD the length of the shortest path from u to v in G0. 

If u D v, the distance is zero. 

Partition V 0 into sets L and R so that 

L D fu j dist.u/ is even g; 

R D fu j dist.u/ is odd g: 

Since G0 is not bipartite, there must be a pair of adjacent nodes u1 and u2 

that are both in L or both in R. Let e denote the edge incident to u1 and u2. 

Let Pi denote a shortest path in G0 from ui to v for i D 1; 2. Because u1 

and u2 are both in L or both in R, it must be the case that P1 and P2 both 
have even length or they both have odd length. In either case, the union of 
P1, P2, and e forms a closed walk with odd length, which is a contradiction. 
Hence 4 IMPLIES 1. � 
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Figure 5.23 A possible floor plan for a museum. Can you find a walk that tra­
verses every edge exactly once? 

Theorem 5.6.2 turns out to be useful since bipartite graphs come up fairly often 
in practice. We’ll see examples when we talk about planar graphs in Section 5.8 
and when we talk about packet routing in communication networks in Chapter 6. 

5.6.3 Euler Tours 

Can you walk every hallway in the Museum of Fine Arts exactly once? If we 
represent hallways and intersections with edges and vertices, then this reduces to a 
question about graphs. For example, could you visit every hallway exactly once in 
a museum with the floor plan in Figure 5.23? 

The entire field of graph theory began when Euler asked whether the seven 
bridges of Königsberg could all be traversed exactly once—essentially the same 
question we asked about the Museum of Fine Arts. In his honor, an Euler walk is 
a defined to be a walk that traverses every edge in a graph exactly once. Similarly, 
an Euler tour is an Euler walk that starts and finishes at the same vertex. Graphs 
with Euler tours and Euler walks both have simple characterizations. 

Theorem 5.6.3. A connected graph has an Euler tour if and only if every vertex 
has even degree. 

Proof. We first show that if a graph has an Euler tour, then every vertex has even 
degree. Assume that a graph G D .V; E/ has an Euler tour v0, v1, . . . , vk where 
vk D v0. Since every edge is traversed once in the tour, k D jEj and the degree of 
a node u in G is the number of times that node appears in the sequence v0, v1, . . . , 
vk�1 times two. We multiply by two since if u D vi for some i where 0 < i < k, 
then both fvi�1; vi g and fvi ; viC1g are edges incident to u in G. If u D v0 D vk , 
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then both fvk�1; vkg and fv0; v1g are edges incident to u in G. Hence, the degree 
of every node is even. 

We next show that if the degree of every node is even in a graph G D .V; E/, 
then there is an Euler tour. Let 

v0; v1; : : : ; vkW WWD

be the longest walk in G that traverses no edge more than once16. W must traverse 
every edge incident to vk ; otherwise the walk could be extended and W would not 
be the longest walk that traverses all edges at most once. Moreover, it must be that 
vk D v0 and that W is a closed walk, since otherwise vk would have odd degree 
in W (and hence in G), which is not possible by assumption. 

We conclude the argument with a proof by contradiction. Suppose that W is not 
an Euler tour. Because G is a connected graph, we can find an edge not in W but 
incident to some vertex in W . Call this edge fu; vi g. But then we can construct a 
walk W 0 that is longer than W but that still uses no edge more than once: 

W 0 WWD u; vi ; viC1; : : : ; vk ; v1; v2; : : : ; vi : 

This contradicts the definition of W , so W must be an Euler tour after all. � 

It is not difficult to extend Theorem 5.6.3 to prove that a connected graph G has 
an Euler walk if and only if precisely 0 or 2 nodes in G have odd degree. Hence, 
we can conclude that the graph shown in Figure 5.23 has an Euler walk but not an 
Euler tour since the graph has precisely two nodes with odd degree. 

Although the proof of Theorem 5.6.3 does not explicitly define a method for 
finding an Euler tour when one exists, it is not hard to modify the proof to produce 
such a method. The idea is to grow a tour by continually splicing in closed walks 
until all the edges are consumed. 

5.6.4 Hamiltonian Cycles 

Hamiltonian cycles are the unruly cousins of Euler tours. 

Definition 5.6.4. A Hamiltonian cycle in a graph G is a cycle that visits every node 
in G exactly once. Similarly, a Hamiltonian path is a path in G that visits every 
node exactly once. 

16Did you notice that we are using a variation of the Well Ordering Principle here when we im­
plicitly assume that a longest walk exists? This is ok since the length of a walk where no edge is used 
more than once is at most jEj. 
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Figure 5.24 A weighted graph. Can you find a cycle with weight 15 that visits 
every node exactly once? 

Although Hamiltonian cycles sound similar to Euler tours—one visits every node 
once while the other visits every edge once—finding a Hamiltonian cycle can be 
a lot harder than finding an Euler tour. The same is true for Hamiltonian paths. 
This is because no one has discovered a simple characterization of all graphs with a 
Hamiltonian cycle. In fact, determining whether a graph has a Hamiltonian cycle is 
the same category of problem as the SAT problem of Section 1.5 and the coloring 
problem in Section 5.3; you get a million dollars for finding an efficient way to 
determine when a graph has a Hamiltonian cycle—or proving that no procedure 
works efficiently on all graphs. 

5.6.5 The Traveling Salesperson Problem 

As if the problem of finding a Hamiltonian cycle is not hard enough, when the 
graph is weighted, we often want to find a Hamiltonian cycle that has least pos­
sible weight. This is a very famous optimization problem known as the Traveling 
Salesperson Problem. 

Definition 5.6.5. Given a weighted graph G, the weight of a cycle in G is defined 
as the sum of the weights of the edges in the cycle. 

For example, consider the graph shown in Figure 5.24 and suppose that you 
would like to visit every node once and finish at the node where you started. Can 
you find way to do this by traversing a cycle with weight 15? 

Needless to say, if you can figure out a fast procedure that finds the optimal cycle 
for the traveling salesperson, let us know so that we can win a million dollars. 
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Figure 5.25 A 9-node tree.


Figure 5.26 A 6-node forest consisting of 2 component trees. Note that this 6­
node graph is not itself a tree since it is not connected. 

5.7 Trees 

As we have just seen, finding good cycles in a graph can be trickier than you might 
first think. But what if a graph has no cycles at all? Sounds pretty dull. But graphs 
without cycles (called acyclic graphs) are probably the most important graphs of 
all when it comes to computer science. 

5.7.1 Definitions


Definition 5.7.1. A connected acyclic graph is called a tree.


For example, Figure 5.25 shows an example of a 9-node tree.

The graph shown in Figure 5.26 is not a tree since it is not connected, but it is a


forest. That’s because, of course, it consists of a collection of trees. 

Definition 5.7.2. If every connected component of a graph G is a tree, then G is a 
forest. 

One of the first things you will notice about trees is that they tend to have a lot 
of nodes with degree one. Such nodes are called leaves. 

Definition 5.7.3. A leaf is a node with degree 1 in a tree (or forest). 

For example, the tree in Figure 5.25 has 5 leaves and the forest in Figure 5.26 
has 4 leaves. 
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Figure 5.27 The tree from Figure 5.25 redrawn in a leveled fashion, with node E 
as the root. 

Trees are a fundamental data structure in computer science. For example, in­
formation is often stored in tree-like data structures and the execution of many 
recursive programs can be modeled as the traversal of a tree. In such cases, it is 
often useful to draw the tree in a leveled fashion where the node in the top level is 
identified as the root, and where every edge joins a parent to a child. For example, 
we have redrawn the tree from Figure 5.25 in this fashion in Figure 5.27. In this 
example, node d is a child of node e and a parent of nodes b and c. 

In the special case of ordered binary trees, every node is the parent of at most 2 
children and the children are labeled as being a left-child or a right-child. 

5.7.2 Properties 

Trees have many unique properties. We have listed some of them in the following 
theorem. 

Theorem 5.7.4. Every tree has the following properties: 

1. Any connected subgraph is a tree. 

2. There is a unique simple path between every pair of vertices. 

3. Adding an edge between nonadjacent nodes in a tree creates a graph with a 
cycle. 

4. Removing any edge disconnects the graph. 

5. If the tree has at least two vertices, then it has at least two leaves. 

6. The number of vertices in a tree is one larger than the number of edges. 
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u yx v

Figure 5.28 If there are two paths between u and v, the graph must contain a 
cycle. 

Proof. 1. A cycle in a subgraph is also a cycle in the whole graph, so any sub­
graph of an acyclic graph must also be acyclic. If the subgraph is also con­
nected, then by definition, it is a tree. 

2. Since a tree is connected, there is at least one path between every pair of ver­
tices. Suppose for the purposes of contradiction, that there are two different 
paths between some pair of vertices u and v. Beginning at u, let x be the 
first vertex where the paths diverge, and let y be the next vertex they share. 
(For example, see Figure 5.28.) Then there are two paths from x to y with no 
common edges, which defines a cycle. This is a contradiction, since trees are 
acyclic. Therefore, there is exactly one path between every pair of vertices. 

3. An additional edge fu; vg together with the unique path between u and v 
forms a cycle. 

4. Suppose that we remove edge fu; vg. Since the tree contained a unique path 
between u and v, that path must have been fu; vg. Therefore, when that edge 
is removed, no path remains, and so the graph is not connected. 

5. Let v1; : : : ; vm be the sequence of vertices on a longest path in the tree. Then 
m � 2, since a tree with two vertices must contain at least one edge. There 
cannot be an edge fv1; vi g for 2 < i � m; otherwise, vertices v1; : : : ; vi 

would from a cycle. Furthermore, there cannot be an edge fu; v1g where u 
is not on the path; otherwise, we could make the path longer. Therefore, the 
only edge incident to v1 is fv1; v2g, which means that v1 is a leaf. By a 
symmetric argument, vm is a second leaf. 

6. We use induction on the proposition P.n/ WWD there are n � 1 edges in any 
n-vertex tree. 

Base Case (n D 1): P.1/ is true since a tree with 1 node has 0 edges and 
1 � 1 D 0. 
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Figure 5.29 A graph where the edges of a spanning tree have been thickened. 

Inductive step: Now suppose that P.n/ is true and consider an .n C 1/­
vertex tree, T . Let v be a leaf of the tree. You can verify that deleting a 
vertex of degree 1 (and its incident edge) from any connected graph leaves 
a connected subgraph. So by part 1 of Theorem 5.7.4, deleting v and its 
incident edge gives a smaller tree, and this smaller tree has n � 1 edges by 
induction. If we re-attach the vertex v and its incident edge, then we find that 
T has n D .n C 1/ � 1 edges. Hence, P.n C 1/ is true, and the induction 
proof is complete. � 

Various subsets of properties in Theorem 5.7.4 provide alternative characteriza­
tions of trees, though we won’t prove this. For example, a connected graph with a 
number of vertices one larger than the number of edges is necessarily a tree. Also, 
a graph with unique paths between every pair of vertices is necessarily a tree. 

5.7.3 Spanning Trees 

Trees are everywhere. In fact, every connected graph contains a subgraph that is 
a tree with the same vertices as the graph. This is a called a spanning tree for 
the graph. For example, Figure 5.29 is a connected graph with a spanning tree 
highlighted. 

Theorem 5.7.5. Every connected graph contains a spanning tree. 

Proof. By contradiction. Assume there is some connected graph G that has no 
spanning tree and let T be a connected subgraph of G, with the same vertices as 
G, and with the smallest number of edges possible for such a subgraph. By the 
assumption, T is not a spanning tree and so it contains some cycle: 

fv0; v1g; fv1; v2g; : : : ; fvk; v0g 

Suppose that we remove the last edge, fvk ; v0g. If a pair of vertices x and y was 
joined by a path not containing fvk; v0g, then they remain joined by that path. On 
the other hand, if x and y were joined by a path containing fvk ; v0g, then they 
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Figure 5.30 A spanning tree (a) with weight 19 for a graph (b). 

remain joined by a walk containing the remainder of the cycle. By Lemma 5.4.2, 
they must also then be joined by a path. So all the vertices of G are still connected 
after we remove an edge from T . This is a contradiction, since T was defined to 
be a minimum size connected subgraph with all the vertices of G. So the theorem 
must be true. � 

5.7.4 Minimum Weight Spanning Trees 

Spanning trees are interesting because they connect all the nodes of a graph using 
the smallest possible number of edges. For example the spanning tree for the 6­
node graph shown in Figure 5.29 has 5 edges. 

Spanning trees are very useful in practice, but in the real world, not all span­
ning trees are equally desirable. That’s because, in practice, there are often costs 
associated with the edges of the graph. 

For example, suppose the nodes of a graph represent buildings or towns and 
edges represent connections between buildings or towns. The cost to actually make 
a connection may vary a lot from one pair of buildings or towns to another. The 
cost might depend on distance or topography. For example, the cost to connect LA 
to NY might be much higher than that to connect NY to Boston. Or the cost of a 
pipe through Manhattan might be more than the cost of a pipe through a cornfield. 

In any case, we typically represent the cost to connect pairs of nodes with a 
weighted edge, where the weight of the edge is its cost. The weight of a spanning 
tree is then just the sum of the weights of the edges in the tree. For example, the 
weight of the spanning tree shown in Figure 5.30 is 19. 

The goal, of course, is to find the spanning tree with minimum weight, called the 
min-weight spanning tree (MST for short). 
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Figure 5.31 An MST with weight 17 for the graph in Figure 5.30(b). 

Definition 5.7.6. The min-weight spanning tree (MST) of an edge-weighted graph G 
is the spanning tree of G with the smallest possible sum of edge weights. 

Is the spanning tree shown in Figure 5.30(a) an MST of the weighted graph 
shown in Figure 5.30(b)? Actually, it is not, since the tree shown in Figure 5.31 is 
also a spanning tree of the graph shown in Figure 5.30(b), and this spanning tree 
has weight 17. 

What about the tree shown in Figure 5.31? Is it an MST? It seems to be, but 
how do we prove it? In general, how do we find an MST? We could, of course, 
enumerate all trees, but this could take forever for very large graphs. 

Here are two possible algorithms: 

Algorithm 1. Grow a tree one edge at a time by adding the minimum weight edge 
possible to the tree, making sure that you have a tree at each step. 

Algorithm 2. Grow a subgraph one edge at a time by adding the minimum-weight 
edge possible to the subgraph, making sure that you have an acyclic subgraph at 
each step. 

For example, in the weighted graph we have been considering, we might run 
Algorithm 1 as follows. We would start by choosing one of the weight 1 edges, 
since this is the smallest weight in the graph. Suppose we chose the weight 1 edge 
on the bottom of the triangle of weight 1 edges in our graph. This edge is incident 
to two weight 1 edges, a weight 4 edge, a weight 7 edge, and a weight 3 edge. We 
would then choose the incident edge of minimum weight. In this case, one of the 
two weight 1 edges. At this point, we cannot choose the third weight 1 edge since 
this would form a cycle, but we can continue by choosing a weight 2 edge. We 
might end up with the spanning tree shown in Figure 5.32, which has weight 17, 
the smallest we’ve seen so far. 
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Figure 5.32 A spanning tree found by Algorithm 1. 

Now suppose we instead ran Algorithm 2 on our graph. We might again choose 
the weight 1 edge on the bottom of the triangle of weight 1 edges in our graph. 
Now, instead of choosing one of the weight 1 edges it touches, we might choose 
the weight 1 edge on the top of the graph. Note that this edge still has minimum 
weight, and does not cause us to form a cycle, so Algorithm 2 can choose it. We 
would then choose one of the remaining weight 1 edges. Note that neither causes us 
to form a cycle. Continuing the algorithm, we may end up with the same spanning 
tree in Figure 5.32, though this need not always be the case. 

It turns out that both algorithms work, but they might end up with different 
MSTs. The MST is not necessarily unique—indeed, if all edges of an n-node graph 
have the same weight ( D 1), then all spanning trees have weight n � 1. 

These are examples of greedy approaches to optimization. Sometimes it works 
and sometimes it doesn’t. The good news is that it works to find the MST. In fact, 
both variations work. It’s a little easier to prove it for Algorithm 2, so we’ll do that 
one here. 

Theorem 5.7.7. For any connected, weighted graph G, Algorithm 2 produces an 
MST for G. 

Proof. The proof is a bit tricky. We need to show the algorithm terminates, that is, 
that if we have selected fewer than n � 1 edges, then we can always find an edge to 
add that does not create a cycle. We also need to show the algorithm creates a tree 
of minimum weight. 

The key to doing all of this is to show that the algorithm never gets stuck or goes 
in a bad direction by adding an edge that will keep us from ultimately producing 
an MST. The natural way to prove this is to show that the set of edges selected at 
any point is contained in some MST—that is, we can always get to where we need 
to be. We’ll state this as a lemma. 
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Lemma 5.7.8. For any m � 0, let S consist of the first m edges selected by Algo­
rithm 2. Then there exists some MST T D .V; E/ for G such that S � E, that is, 
the set of edges that we are growing is always contained in some MST. 

We’ll prove this momentarily, but first let’s see why it helps to prove the theorem. 
Assume the lemma is true. Then how do we know Algorithm 2 can always find an 
edge to add without creating a cycle? Well, as long as there are fewer than n � 1 
edges picked, there exists some edge in E � S and so there is an edge that we can 
add to S without forming a cycle. Next, how do we know that we get an MST at 
the end? Well, once m D n � 1, we know that S is an MST. 

Ok, so the theorem is an easy corollary of the lemma. To prove the lemma, we’ll 
use induction on the number of edges chosen by the algorithm so far. This is very 
typical in proving that an algorithm preserves some kind of invariant condition— 
induct on the number of steps taken, that is, the number of edges added. 

Our inductive hypothesis P.m/ is the following: for any G and any set S of m 
edges initially selected by Algorithm 2, there exists an MST T D .V; E/ of G such 
that S � E. 

For the base case, we need to show P.0/. In this case, S D ;, so S � E trivially 
holds for any MST T D .V; E/. 

For the inductive step, we assume P.m/ holds and show that it implies P.mC1/. 
Let e denote the .mC1/st edge selected by Algorithm 2, and let S denote the first m 
edges selected by Algorithm 2. Let T � D .V �; E�/ be the MST such that S � E�, 
which exists by the inductive hypothesis. There are now two cases: 

Case 1: e 2 E�, in which case S [ feg � E�, and thus P.m C 1/ holds. 

Case 2: e … E�, as illustrated in Figure 5.33. Now we need to find a different 
MST that contains S and e. 

What happens when we add e to T �? Since T � is a tree, we get a cycle. (Here 
we used part 3 of Theorem 5.7.4.) Moreover, the cycle cannot only contains edges 
in S , since e was chosen so that together with the edges in S , it does not form 
a cycle. This implies that feg [ T � contains a cycle that contains an edge e0 of 
E� � S . For example, such an e0 is shown in Figure 5.33. 

Note that the weight of e is at most that of e0. This is because Algorithm 2 picks 
the minimum weight edge that does not make a cycle with S . Since e0 2 T �, e0 

cannot make a cycle with S and if the weight of e were greater than the weight 
of e0, Algorithm 2 would not have selected e ahead of e0. 

Okay, we’re almost done. Now we’ll make an MST that contains S [ feg. Let 
T �� D .V; E��/ where E�� D .E� � fe0g/ [ feg, that is, we swap e and e0 in T �. 

Claim 5.7.9. T �� is an MST. 
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e

e0

Figure 5.33 The graph formed by adding e to T �. Edges of S are denoted with 
solid lines and edges of E� � S are denoted with dashed lines. 

Proof of claim. We first show that T �� is a spanning tree. T �� is acyclic because 
it was produced by removing an edge from the only cycle in T � [ feg. T �� is 
connected since the edge we deleted from T � [ feg was on a cycle. Since T �� 

contains all the nodes of G, it must be a spanning tree for G. 
Now let’s look at the weight of T ��. Well, since the weight of e was at most that 

of e0, the weight of T �� is at most that of T �, and thus T �� is an MST for G. � 

Since S [ feg � E��, P.m C 1/ holds. Thus, Algorithm 2 must eventually 
produce an MST. This will happens when it adds n � 1 edges to the subgraph it 
builds. � 

So now we know for sure that the MST for our example graph has weight 17 
since it was produced by Algorithm 2. And we have a fast algorithm for finding a 
minimum-weight spanning tree for any graph. 

5.8 Planar Graphs 

5.8.1 Drawing Graphs in the Plane 

Suppose there are three dog houses and three human houses, as shown in Fig­
ure 5.34. Can you find a route from each dog house to each human house such that 
no route crosses any other route? 

A quadrapus is a little-known animal similar to an octopus, but with four arms. 
Suppose there are five quadrapi resting on the sea floor, as shown in Figure 5.35. 
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Figure 5.34 Three dog houses and and three human houses. Is there a route from 
each dog house to each human house so that no pair of routes cross each other? 
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Figure 5.35 Five quadrapi (4-armed creatures). 

Can each quadrapus simultaneously shake hands with every other in such a way 
that no arms cross? 

Definition 5.8.1. A drawing of a graph in the plane consists of an assignment of 
vertices to distinct points in the plane and an assignment of edges to smooth, non­
self-intersecting curves in the plane (whose endpoints are the nodes incident to the 
edge). The drawing is planar (that is, it is a planar drawing) if none of the curves 
“cross”—that is, if the only points that appear on more than one curve are the vertex 
points. A planar graph is a graph that has a planar drawing. 

Thus, these two puzzles are asking whether the graphs in Figure 5.36 are planar; 
that is, whether they can be redrawn so that no edges cross. The first graph is called 
the complete bipartite graph, K3;3, and the second is K5. 

In each case, the answer is, “No—but almost!” In fact, if you remove an edge 
from either of them, then the resulting graphs can be redrawn in the plane so that no 
edges cross. For example, we have illustrated the planar drawings for each resulting 
graph in Figure 5.37. 
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(a) (b) 

Figure 5.36 K3;3 (a) and K5 (b). Can you redraw these graphs so that no pairs 
of edges cross? 

v

u
u

v

(a) (b)


Figure 5.37 Planar drawings of K3;3 � fu; vg (a) and K5 � fu; vg (b).
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Planar drawings have applications in circuit layout and are helpful in displaying 
graphical data such as program flow charts, organizational charts, and scheduling 
conflicts. For these applications, the goal is to draw the graph in the plane with as 
few edge crossings as possible. (See the box on the following page for one such 
example.) 

5.8.2 A Recursive Definition for Planar Graphs 

Definition 5.8.1 is perfectly precise but has the challenge that it requires us to work 
with concepts such as a “smooth curve” when trying to prove results about planar 
graphs. The trouble is that we have not really laid the groundwork from geometry 
and topology to be able to reason carefully about such concepts. For example, we 
haven’t really defined what it means for a curve to be smooth—we just drew a 
simple picture (for example, Figure 5.37) and hoped you would get the idea. 

Relying on pictures to convey new concepts is generally not a good idea and 
can sometimes lead to disaster (or, at least, false proofs). Indeed, it is because of 
this issue that there have been so many false proofs relating to planar graphs over 
time.18 Such proofs usually rely way too heavily on pictures and have way too 
many statements like, 

As you can see from Figure ABC, it must be that property XYZ holds 
for all planar graphs. 

The good news is that there is another way to define planar graphs that uses only 
discrete mathematics. In particular, we can define the class of planar graphs as a 
recursive data type. In order to understand how it works, we first need to understand 
the concept of a face in a planar drawing. 

Faces 

In a planar drawing of a graph. the curves corresponding to the edges divide up 
the plane into connected regions. These regions are called the continuous faces19 

of the drawing. For example, the drawing in Figure 5.38 has four continuous faces. 
Face IV, which extends off to infinity in all directions, is called the outside face. 

Notice that the vertices along the boundary of each of the faces in Figure 5.38 
form a cycle. For example, labeling the vertices as in Figure 5.39, the cycles for 
the face boundaries are 

abca abda bcdb acda: (5.4) 
18The false proof of the 4-Color Theorem for planar graphs is not the only example. 
19Most texts drop the word continuous from the definition of a face. We need it to differentiate the 

connected region in the plane from the closed walk in the graph that bounds the region, which we 
will call a discrete face. 
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When wires are arranged on a surface, like a circuit board or microchip, crossings 
require troublesome three-dimensional structures. When Steve Wozniak designed 
the disk drive for the early Apple II computer, he struggled mightily to achieve a 
nearly planar design: 

For two weeks, he worked late each night to make a satisfactory de­
sign. When he was finished, he found that if he moved a connector 
he could cut down on feedthroughs, making the board more reliable. 
To make that move, however, he had to start over in his design. This 
time it only took twenty hours. He then saw another feedthrough 
that could be eliminated, and again started over on his design. “The 
final design was generally recognized by computer engineers as bril­
liant and was by engineering aesthetics beautiful. Woz later said, ’It’s 
something you can only do if you’re the engineer and the PC board 
layout person yourself. That was an artistic layout. The board has 
virtually no feedthroughs.’ ”17 

II I

III

IV

Figure 5.38 A planar drawing with four faces.
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Figure 5.39 The drawing with labeled vertices.
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Figure 5.40 A planar drawing with a bridge, namely the edge fc; eg. 

These four cycles correspond nicely to the four continuous faces in Figure 5.39. So 
nicely, in fact, that we can identify each of the faces in Figure 5.39 by its cycle. 
For example, the cycle abca identifies face III. Hence, we say that the cycles in 
Equation 5.4 are the discrete faces of the graph in Figure 5.39. We use the term 
“discrete” since cycles in a graph are a discrete data type (as opposed to a region in 
the plane, which is a continuous data type). 

Unfortunately, continuous faces in planar drawings are not always bounded by 
cycles in the graph—things can get a little more complicated. For example, con­
sider the planar drawing in Figure 5.40. This graph has what we will call a bridge 
(namely, the edge fc; eg) and the outer face is 

abcefgecda: 

This is not a cycle, since it has to traverse the bridge fc; eg twice, but it is a closed 
walk. 

As another example, consider the planar drawing in Figure 5.41. This graph has 
what we will call a dongle (namely, the nodes v, x, y, and w, and the edges incident 
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Figure 5.41 A planar drawing with a dongle, namely the subgraph with nodes v, 
w, x, y. 

to them) and the inner face is 

rstvxyxvwvtur: 

This is not a cycle because it has to traverse every edge of the dongle twice—once 
“coming” and once “going,” but once again, it is a closed walk. 

It turns out that bridges and dongles are the only complications, at least for con­
nected graphs. In particular, every continuous face in a planar drawing corresponds 
to a closed walk in the graph. We refer to such closed walks as the discrete faces 
of the drawing. 

A Recursive Definition for Planar Embeddings 

The association between the continuous faces of a planar drawing and closed walks 
will allow us to characterize a planar drawing in terms of the closed walks that 
bound the continuous faces. In particular, it leads us to the discrete data type of pla­
nar embeddings that we can use in place of continuous planar drawings. Namely, 
we’ll define a planar embedding recursively to be the set of boundary-tracing closed 
walks that we could get by drawing one edge after another. 

Definition 5.8.2. A planar embedding of a connected graph consists of a nonempty 
set of closed walks of the graph called the discrete faces of the embedding. Planar 
embeddings are defined recursively as follows: 

Base case: If G is a graph consisting of a single vertex v, then a planar embedding 
of G has one discrete face, namely the length zero closed walk v. 
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Figure 5.42 The “split a face” case. 

Constructor Case (split a face): Suppose G is a connected graph with a planar 
embedding, and suppose a and b are distinct, nonadjacent vertices of G that appear 
on some discrete face 
 of the planar embedding. That is, 
 is a closed walk of the 
form 

a : : : b : : : a: 

Then the graph obtained by adding the edge fa; bg to the edges of G has a planar 
embedding with the same discrete faces as G, except that face 
 is replaced by the 
two discrete faces20 

a : : : ba and ab : : : a; 

as illustrated in Figure 5.42. 

Constructor Case (add a bridge): Suppose G and H are connected graphs with 
planar embeddings and disjoint sets of vertices. Let a be a vertex on a discrete face, 

 , in the embedding of G. That is, 
 is of the form 

a : : : a: 

Similarly, let b be a vertex on a discrete face, ı, in the embedding of H . So ı is of 
the form 

b � � � b: 

Then the graph obtained by connecting G and H with a new edge, fa; bg, has a 
planar embedding whose discrete faces are the union of the discrete faces of G and 

20 There is a special case of this rule. If G is a line graph beginning with a and ending with b, 
then the cycles into which 
 splits are actually the same. That’s because adding edge fa; bg creates 
a simple cycle graph, Cn, that divides the plane into an “inner” and an “outer” region with the same 
border. In order to maintain the correspondence between continuous faces and discrete faces, we 
have to allow two “copies” of this same cycle to count as discrete faces. 
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Figure 5.43 The “add a bridge” case. 

H , except that faces 
 and ı are replaced by one new face 

a : : : ab � � � ba: 

This is illustrated in Figure 5.43, where the faces of G and H are: 

G W faxyza; axya; ayzag H W fbtuvwb; btvwb; tuvtg; 

and after adding the bridge fa; bg, there is a single connected graph with faces 

faxyzabtuvwba; axya; ayza; btvwb; tuvtg: 

Does It Work? 

Yes! In general, a graph is planar if and only if each of its connected components 
has a planar embedding as defined in Definition 5.8.2. Unfortunately, proving this 
fact requires a bunch of mathematics that we don’t cover in this text—stuff like 
geometry and topology. Of course, that is why we went to the trouble of including 
Definition 5.8.2—we don’t want to deal with that stuff in this text and now that we 
have a recursive definition for planar graphs, we won’t need to. That’s the good 
news. 

The bad news is that Definition 5.8.2 looks a lot more complicated than the 
intuitively simple notion of a drawing where edges don’t cross. It seems like it 
would be easier to stick to the simple notion and give proofs using pictures. Perhaps 
so, but your proofs are more likely to be complete and correct if you work from the 
discrete Definition 5.8.2 instead of the continuous Definition 5.8.1. 

Where Did the Outer Face Go? 

Every planar drawing has an immediately-recognizable outer face—its the one that 
goes to infinity in all directions. But where is the outer face in a planar embedding? 
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Figure 5.44 Two illustrations of the same embedding. 

There isn’t one! That’s because there really isn’t any need to distinguish one. 
In fact, a planar embedding could be drawn with any given face on the outside. 
An intuitive explanation of this is to think of drawing the embedding on a sphere 
instead of the plane. Then any face can be made the outside face by “puncturing” 
that face of the sphere, stretching the puncture hole to a circle around the rest of the 
faces, and flattening the circular drawing onto the plane. 

So pictures that show different “outside” boundaries may actually be illustra­
tions of the same planar embedding. For example, the two embeddings shown in 
Figure 5.44 are really the same. 

This is what justifies the “add a bridge” case in Definition 5.8.2: whatever face 
is chosen in the embeddings of each of the disjoint planar graphs, we can draw 
a bridge between them without needing to cross any other edges in the drawing, 
because we can assume the bridge connects two “outer” faces. 

5.8.3 Euler’s Formula 

The value of the recursive definition is that it provides a powerful technique for 
proving properties of planar graphs, namely, structural induction. For example, we 
will now use Definition 5.8.2 and structural induction to establish one of the most 
basic properties of a connected planar graph; namely, the number of vertices and 
edges completely determines the number of faces in every possible planar embed­
ding of the graph. 

Theorem 5.8.3 (Euler’s Formula). If a connected graph has a planar embedding, 
then 

v � e C f D 2 

where v is the number of vertices, e is the number of edges, and f is the number of 
faces. 

For example, in Figure 5.38, jV j D 4, jEj D 6, and f D 4. Sure enough, 
4 � 6 C 4 D 2, as Euler’s Formula claims. 
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Proof. The proof is by structural induction on the definition of planar embeddings. 
Let P.E/ be the proposition that v � e C f D 2 for an embedding, E . 

Base case: (E is the one-vertex planar embedding). By definition, v D 1, e D 0, 
and f D 1, so P.E/ indeed holds. 

Constructor case (split a face): Suppose G is a connected graph with a planar 
embedding, and suppose a and b are distinct, nonadjacent vertices of G that appear 
on some discrete face, 
 D a : : : b � � � a, of the planar embedding. 

Then the graph obtained by adding the edge fa; bg to the edges of G has a planar 
embedding with one more face and one more edge than G. So the quantity v�eCf 
will remain the same for both graphs, and since by structural induction this quantity 
is 2 for G’s embedding, it’s also 2 for the embedding of G with the added edge. So 
P holds for the constructed embedding. 

Constructor case (add bridge): Suppose G and H are connected graphs with pla­
nar embeddings and disjoint sets of vertices. Then connecting these two graphs 
with a bridge merges the two bridged faces into a single face, and leaves all other 
faces unchanged. So the bridge operation yields a planar embedding of a connected 
graph with vG C vH vertices, eG C eH C 1 edges, and fG C fH � 1 faces. Since 

.vG C vH / � .eG C eH C 1/ C .fG C fH � 1/ 

D .vG � eG C fG / C .vH � eH C fH / � 2 

D .2/ C .2/ � 2 (by structural induction hypothesis) 

D 2; 

v � e C f remains equal to 2 for the constructed embedding. That is, P.E/ also 
holds in this case. 

This completes the proof of the constructor cases, and the theorem follows by 
structural induction. � 

5.8.4 Bounding the Number of Edges in a Planar Graph 

Like Euler’s formula, the following lemmas follow by structural induction from 
Definition 5.8.2. 

Lemma 5.8.4. In a planar embedding of a connected graph, each edge is traversed 
once by each of two different faces, or is traversed exactly twice by one face. 

Lemma 5.8.5. In a planar embedding of a connected graph with at least three 
vertices, each face is of length at least three. 

Combining Lemmas 5.8.4 and 5.8.5 with Euler’s Formula, we can now prove 
that planar graphs have a limited number of edges: 
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Theorem 5.8.6. Suppose a connected planar graph has v � 3 vertices and e edges. 
Then 

e � 3v � 6: 

Proof. By definition, a connected graph is planar iff it has a planar embedding. So 
suppose a connected graph with v vertices and e edges has a planar embedding 
with f faces. By Lemma 5.8.4, every edge is traversed exactly twice by the face 
boundaries. So the sum of the lengths of the face boundaries is exactly 2e. Also by 
Lemma 5.8.5, when v � 3, each face boundary is of length at least three, so this 
sum is at least 3f . This implies that 

3f � 2e: (5.5) 

But f D e � v C 2 by Euler’s formula, and substituting into (5.5) gives 

3.e � v C 2/ � 2e 

e � 3v C 6 � 0 

e � 3v � 6 � 

5.8.5 Returning to K5 and K3;3 

Theorem 5.8.6 lets us prove that the quadrapi can’t all shake hands without cross­
ing. Representing quadrapi by vertices and the necessary handshakes by edges, we 
get the complete graph, K5. Shaking hands without crossing amounts to show­
ing that K5 is planar. But K5 is connected, has 5 vertices and 10 edges, and 
10 > 3 � 5 � 6. This violates the condition of Theorem 5.8.6 required for K5 

to be planar, which proves 

Corollary 5.8.7. K5 is not planar. 

We can also use Euler’s Formula to show that K3;3 is not planar. The proof is 
similar to that of Theorem 5.8.6 except that we use the additional fact that K3;3 is 
a bipartite graph. 

Theorem 5.8.8. K3;3 is not planar. 

Proof. By contradiction. Assume K3;3 is planar and consider any planar embed­
ding of K3;3 with f faces. Since K3;3 is bipartite, we know by Theorem 5.6.2 that 
K3;3 does not contain any closed walks of odd length. By Lemma 5.8.5, every face 
has length at least 3. This means that every face in any embedding of K3;3 must 
have length at least 4. Plugging this fact into the proof of Theorem 5.8.6, we find 
that the sum of the lengths of the face boundaries is exactly 2e and at least 4f . 
Hence, 

4f � 2e 
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for any bipartite graph. 
Plugging in e D 9 and v D 6 for K3;3 in Euler’s Formula, we find that 

f D 2 C e � v D 5: 

But 
4 � 5 — 2 � 9; 

and so we have a contradiction. Hence K3;3 must not be planar. � 

5.8.6 Another Characterization for Planar Graphs 

We did not choose to pick on K5 and K3;3 because of their application to dog 
houses or quadrapi shaking hands. Rather, we selected these graphs as examples 
because they provide another way to characterize the set of planar graphs. 

Theorem 5.8.9 (Kuratowski). A graph is not planar if and only if it contains K5 

or K3;3 as a minor. 

Definition 5.8.10. A minor of a graph G is a graph that can be obtained by re­
peatedly21 deleting vertices, deleting edges, and merging adjacent vertices of G. 
Merging two adjacent vertices, n1 and n2 of a graph means deleting the two ver­
tices and then replacing them by a new “merged” vertex, m, adjacent to all the 
vertices that were adjacent to either of n1 or n2, as illustrated in Figure 5.45. 

For example, Figure 5.46 illustrates why C3 is a minor of the graph in Fig­
ure 5.46(a). In fact C3 is a minor of a connected graph G if and only if G is not a 
tree. 

We will not prove Theorem 5.8.9 here, nor will we prove the following handy 
facts, which are obvious given the continuous Definition 5.8.1, and which can be 
proved using the recursive Definition 5.8.2. 

Lemma 5.8.11. Deleting an edge from a planar graph leaves another planar graph. 

Corollary 5.8.12. Deleting a vertex from a planar graph, along with all its incident 
edges, leaves another planar graph. 

Theorem 5.8.13. Any subgraph of a planar graph is planar. 

Theorem 5.8.14. Merging two adjacent vertices of a planar graph leaves another 
planar graph. 

21The three operations can be performed in any order and in any quantities, or not at all. 

http:Lemma5.8.11
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Figure 5.45 Merging adjacent vertices n1 and n2 into new vertex, m. 

5.8.7 Coloring Planar Graphs 

We’ve covered a lot of ground with planar graphs, but not nearly enough to prove 
the famous 4-color theorem. But we can get awfully close. Indeed, we have done 
almost enough work to prove that every planar graph can be colored using only 5 
colors. We need only one more lemma: 

Lemma 5.8.15. Every planar graph has a vertex of degree at most five. 

Proof. By contradiction. If every vertex had degree at least 6, then the sum of the 
vertex degrees is at least 6v, but since the sum of the vertex degrees equals 2e, by 
the Handshake Lemma (Lemma 5.2.1), we have e � 3v contradicting the fact that 
e � 3v � 6 < 3v by Theorem 5.8.6. � 

Theorem 5.8.16. Every planar graph is five-colorable. 

Proof. The proof will be by strong induction on the number, v, of vertices, with 
induction hypothesis: 

Every planar graph with v vertices is five-colorable. 

Base cases (v � 5): immediate. 

Inductive case: Suppose G is a planar graph with v C 1 vertices. We will describe 
a five-coloring of G. 
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(a) (b) (c)

(d) (e) (f)

e1

v1

v2

e2

v3

Figure 5.46 One method by which the graph in (a) can be reduced to C3 (f), 
thereby showing that C3 is a minor of the graph. The steps are: merging the nodes 
incident to e1 (b), deleting v1 and all edges incident to it (c), deleting v2 (d), delet­
ing e2, and deleting v3 (f). 
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First, choose a vertex, g, of G with degree at most 5; Lemma 5.8.15 guarantees 
there will be such a vertex. 

Case 1: (deg.g/ < 5): Deleting g from G leaves a graph, H , that is planar by 
Corollary 5.8.12, and, since H has v vertices, it is five-colorable by induction 
hypothesis. Now define a five coloring of G as follows: use the five-coloring 
of H for all the vertices besides g, and assign one of the five colors to g that 
is not the same as the color assigned to any of its neighbors. Since there are 
fewer than 5 neighbors, there will always be such a color available for g. 

Case 2: (deg.g/ D 5): If the five neighbors of g in G were all adjacent to each 
other, then these five vertices would form a nonplanar subgraph isomorphic 
to K5, contradicting Theorem 5.8.13 (since K5 is not planar). So there must 
be two neighbors, n1 and n2, of g that are not adjacent. Now merge n1 and 
g into a new vertex, m. In this new graph, n2 is adjacent to m, and the graph 
is planar by Theorem 5.8.14. So we can then merge m and n2 into a another 
new vertex, m0, resulting in a new graph, G0, which by Theorem 5.8.14 is 
also planar. Since G0 has v � 1 vertices, it is five-colorable by the induction 
hypothesis. 

Define a five coloring of G as follows: use the five-coloring of G0 for all the 
vertices besides g, n1 and n2. Next assign the color of m0 in G0 to be the color 
of the neighbors n1 and n2. Since n1 and n2 are not adjacent in G, this defines a 
proper five-coloring of G except for vertex g. But since these two neighbors of g 
have the same color, the neighbors of g have been colored using fewer than five 
colors altogether. So complete the five-coloring of G by assigning one of the five 
colors to g that is not the same as any of the colors assigned to its neighbors. 

� 

5.8.8 Classifying Polyhedra 

The Pythagoreans had two great mathematical secrets, the irrationality of 
p

2 and 
a geometric construct that we’re about to rediscover! 

A polyhedron is a convex, three-dimensional region bounded by a finite number 
of polygonal faces. If the faces are identical regular polygons and an equal number 
of polygons meet at each corner, then the polyhedron is regular. Three examples 
of regular polyhedra are shown in Figure 5.34: the tetrahedron, the cube, and the 
octahedron. 

We can determine how many more regular polyhedra there are by thinking about 
planarity. Suppose we took any polyhedron and placed a sphere inside it. Then we 
could project the polyhedron face boundaries onto the sphere, which would give 
an image that was a planar graph embedded on the sphere, with the images of the 
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(a) (b) (c) 

Figure 5.47 The tetrahedron (a), cube (b), and octahedron (c). 

(a) (b) (c) 

Figure 5.48 Planar embeddings of the tetrahedron (a), cube (b, and octahe­
dron (c). 

corners of the polyhedron corresponding to vertices of the graph. We’ve already 
observed that embeddings on a sphere are the same as embeddings on the plane, so 
Euler’s formula for planar graphs can help guide our search for regular polyhedra. 

For example, planar embeddings of the three polyhedra in Figure 5.34 are shown 
in Figure 5.48. 

Let m be the number of faces that meet at each corner of a polyhedron, and let 
n be the number of edges on each face. In the corresponding planar graph, there 
are m edges incident to each of the v vertices. By the Handshake Lemma 5.2.1, we 
know: 

mv D 2e: 

Also, each face is bounded by n edges. Since each edge is on the boundary of two 
faces, we have: 

nf D 2e 

Solving for v and f in these equations and then substituting into Euler’s formula 
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n m v e f polyhedron 
3 3 4 6 4 tetrahedron 
4 3 8 12 6 cube 
3 4 6 12 8 octahedron 
3 5 12 30 20 icosahedron 
5 3 20 30 12 dodecahedron 

Figure 5.49 The only possible regular polyhedra. 

gives: 
2e 2e 
� e C D 2 

m n 
which simplifies to 

1 1 1 1 
C D C (5.6) 

m n e 2 
Equation 5.6 places strong restrictions on the structure of a polyhedron. Every 
nondegenerate polygon has at least 3 sides, so n � 3. And at least 3 polygons must 
meet to form a corner, so m � 3. On the other hand, if either n or m were 6 or more, 
then the left side of the equation could be at most 1=3 C 1=6 D 1=2, which is less 
than the right side. Checking the finitely-many cases that remain turns up only five 
solutions, as shown in Figure 5.49. For each valid combination of n and m, we can 
compute the associated number of vertices v, edges e, and faces f . And polyhedra 
with these properties do actually exist. The largest polyhedron, the dodecahedron, 
was the other great mathematical secret of the Pythagorean sect. 

The 5 polyhedra in Figure 5.49 are the only possible regular polyhedra. So if 
you want to put more than 20 geocentric satellites in orbit so that they uniformly 
blanket the globe—tough luck! 
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