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Notes for Recitation 6 

1 The Pulverizer 

We saw in lecture that the greatest common divisor (GCD) of two numbers can be written 
as a linear combination of them.1 That is, no matter which pair of integers a and b we are 
given, there is always a pair of integer coefficients s and t such that 

gcd(a, b) = sa + tb. 

However, the proof was nonconstructive: it didn’t suggest a way for finding such s and t. 

That job is tackled by a mathematical tool that dates to sixth­century India, where it was 
called kuttak, which means “The Pulverizer”. Today, the Pulverizer is more commonly 
known as “the extended Euclidean GCD algorithm”, but that’s lame. We’re sticking with 
“Pulverizer”. 

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of 
the equation: 

gcd(a, b) = gcd(b, a rem b) 

which was proved in lecture (see the notes “Number Theory I”). For example, we can 
compute the GCD of 259 and 70 as follows: 

gcd(259, 70) = gcd(70, 49) since 259 rem 70 = 49 
= gcd(49, 21) since 70 rem 49 = 21 
= gcd(21, 7) since 49 rem 21 = 7 
= gcd(7, 0) since 21 rem 7 = 0 
= 7. 

The Pulverizer goes through the same steps, but requires some extra bookkeeping along 
the way: as we compute gcd(a, b), we keep track of how to write each of the remainders 
(49, 21, and 7, in the example) as a linear combination of a and b (this is worthwhile, 
because our objective is to write the last nonzero remainder, which is the GCD, as such a 

1In fact, we proved that among all positive linear combinations of the numbers their GCD is the smallest. 
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linear combination). For our example, here is this extra bookkeeping: 

x y (x rem y) = x − q · y 
259 70 49 = 259 − 3 · 70 
70 49 21 = 70 − 1 · 49 

= 70 − 1 · (259 − 3 · 70) 
= −1 · 259 + 4 · 70 

49 21 7 = 49 − 2 · 21 
= (259 − 3 · 70) − 2 · (−1 · 259 + 4 · 70) 

= 259 − 11 · 703 ·


21 7 0


We began by initializing two variables, x = a and y = b. In the first two columns above, 
we carried out Euclid’s algorithm. At each step, we computed x rem y, which can be 
written in the form x − q · y. (Remember that the Division Algorithm says x = q · y + r, 
where r is the remainder. We get r = x − q · y by rearranging terms.) Then we replaced x 
and y in this equation with equivalent linear combinations of a and b, which we already 
had computed. After simplifying, we were left with a linear combination of a and b that 
was equal to the remainder as desired. The final solution is boxed. 
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2 Problem: The Pulverizer! 

There is a pond. Inside the pond there are n pebbles, arranged in a cycle. A frog is 
sitting on one of the pebbles. Whenever he jumps, he lands exactly k pebbles away in 
the clockwise direction, where 0 < k < n. The frog’s meal, a delicious worm, lies on the 
pebble right next to his, in the clockwise direction. 

(a) Describe a situation where the frog can’t reach the worm. 

Solution. If k | n (say k = 3 and n = 6), then no number of jumps will lead the frog to 
the worm, as the frog will be returning to his original pebble ad infinitum. 

(b) In a situation where the frog can actually reach the worm, explain how to use the 
Pulverizer to find how many jumps the frog will need. 

Solution. Suppose the frog can reach the worm. When he actually reaches it, he has 
jumped a number of times, say j, and he has travelled around the cycle a number of times, 
call it c. Then, the distance that the frog has covered is both j · k and c · n + 1, so that 

jk = cn + 1. 

But this means that 1 can be written as a linear combination of n and k: 

(−c)n + jk = 1. 

Since 1 is positive, we conclude that it is a positive linear combination of n and k. And 
since it is the smallest positive integer, we also conclude that it is the smallest positive linear 
combination of n and k. But we have proved in lecture that the smallest positive linear 
combination of two integers is their GCD. So, the GCD of n and k is 1: 

gcd(n, k) = 1 

and we can use the Pulverizer to find −c and j. 

(c) Compute the number of jumps if n = 50 and k = 21. Anything strange? 

Solution. We go through the steps as described in Section 1 (see the table below) to get 
that 1 = 8 · 50 − 19 · 21, or 1 = −(−8) · 50 + (−19) · 21. Hence, c = −8 and j = −19, which 
makes little sense. What does it mean for the frog to make −19 jumps? 

The point is that the Pulverizer is guaranteed to give us the integers coefficients of a 
linear combination that equals the GCD, but it promises nothing about the signs of those 
coefficients —which, in this case we wanted them to be − and +. To get coefficients of the 
desired sign, we have to think more (and much less after the next lecture). 

So, we know 1 = 8 · 50 − 19 · 21. Or, to obtain meaningful signs for the numbers, 
19 · 21 = 8 · 50 − 1. That is, after 19 jumps the frog will have covered 8 full cycles but 
1 pebble. So, he will be right next to his original pebble, but in the counter­clockwise 
direction. Given this, how can he reach the pebble he is after? 
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Well, if he makes 19 more jumps, he will land 2 pebbles away from his original position 
in the counter­clockwise direction. Another 19 jumps will lead him 3 pebbles away, and 
so on. After a total of 49 sets of 19 jumps, he will be 49 pebbles away from its original 
position in the counter­clockwise direction, which is of course the worm’s pebble. Then, 
the frog will have made 49 ∗ 19 = 931 jumps. 

Here is the table produced by the Pulverizer: 

x y (x rem y) = x − q · y 
50 21 8 = 50 − 2 · 21 
21 8 5 = 21 − 2 · 8 

= 21 − 2 · (50 − 2 · 21) 
= −2 · 50 + 5 · 21 

8 5 3 = 8 − 1 · 5 
= (50 − 2 · 21) − 1 · (−2 · 50 + 5 · 21) 
= 3 · 50 − 7 · 21 

5 3 2 = 5 − 1 · 3 
= (−2 · 50 + 5 · 21) − 1 · (3 · 50 − 7 · 21) 
= −5 · 50 + 12 · 21 

3 2 1 = 3 − 1 · 2 
= (3 · 50 − 7 · 21) − 1 · (−5 · 50 + 12 · 21) 

= 50 − 19 · 218 ·


2 1 0
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3 Problem: The Fibonacci numbers. Again. 

Give an inductive proof that the Fibonacci numbers Fn and Fn+1 are relatively prime for 
all n ≥ 0. Recall that the Fibonacci numbers are defined as follows: 

F0 = 0 F1 = 1 Fn = Fn−1 + Fn−2 (for n ≥ 2). 

Solution. We use induction on n. Let P (n) be the proposition that Fn and Fn+1 are 
relatively prime. 

Base case: P (0) is true because F0 = 0 and F1 = 1 are relatively prime. 

Inductive step: We show that, for all n ≥ 0, P (n) implies P (n + 1). So, fix some n ≥ 0 and 
assume that P (n) is true, that is, Fn and Fn+1 are relatively prime. We will show that Fn+1 

and Fn+2 are relatively prime as well. We will do this by contradiction. 

Suppose Fn+1 and Fn+2 are not relatively prime. Then they have a common divisor 
d > 1. But then d also divides the linear combination Fn+2 − Fn+1, which actually equals 
Fn. Hence, d > 1 divides both Fn and Fn+1. Which implies Fn, Fn+1 are not relatively 
prime, a contradiction to the inductive hypothesis. 

Therefore, Fn+1 and Fn+2 are relatively prime. That is, P (n + 1) is true. 

The theorem follows by induction. 
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4 Problem: The power of 3. 

Let N be a number whose decimal expansion consists of 3n identical digits. Show by 
induction that 3n | N . For example: 

32 777777777 �| 
32 = 9 digits 

Recall that 3 divides a number iff it divides the sum of its digits. 

Solution. We proceed by induction on n. Let P (n) be the proposition that 3n | N , 
where the decimal expansion of N consists of 3n identical digits. 

Base case. P (0) is true because 30 = 1 divides every number. 

Inductive step. Now we show that, for all n ≥ 0, P (n) implies P (n + 1). Fix any n ≥ 0 and 
assume P (n) is true. Consider a number whose decimal expansion consists of 3n+1 copies 
of the digit a: 

aaaaaa . . . aaaaaa = aaa . . . aaa aaa . . . aaa aaa . . . aaa � �� � � �� � � �� � � �� � 
3n+1 digits 3n digits 3n digits 3n digits 

= aaa . . . aaa 1 000 . . . 001 000 . . . 001 �� �� � · � �� � � �� 
3n digits 3n digits 3n digits 

Now 3n divides the first term by the assumption P (n), and 3 divides the second term 
since the digits sum to 3. Therefore, the whole expression is divisible by 3n+1. This proves 
P (n + 1). 

By the principle of induction P (n) is true for all n ≥ 0. 


	The Pulverizer
	Problem: The Pulverizer!
	Problem: The Fibonacci numbers. Again.
	Problem: The power of 3.

