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Random Variables 

We’ve used probablity to model a variety of experiments, games, and tests. Through­
out, we have tried to compute probabilities of events. We asked, for example, what is the 
probability of the event that you win the Monty Hall game? What is the probability of 
the event that it rains, given that the weatherman carried his umbrella today? What is the 
probability of the event that you have a rare disease, given that you tested positive? 

But one can ask more general questions about an experiment. How hard will it rain? 
How long will this illness last? How much will I lose playing 6.042 games all day? These 
questions are fundamentally different and not easily phrased in terms of events. The 
problem is that an event either does or does not happen: you win or lose, it rains or 
doesn’t, you’re sick or not. But these new questions are about matters of degree: how 
much, how hard, how long? To approach these questions, we need a new mathematical 
tool. 

1 Random Variables 

Let’s begin with an example. Consider the experiment of tossing three independent, un­
biased coins. Let C be the number of heads that appear. Let M = 1 if the three coins 
come up all heads or all tails, and let M = 0 otherwise. Now every outcome of the three 
coin flips uniquely determines the values of C and M . For example, if we flip heads, tails, 
heads, then C = 2 and M = 0. If we flip tails, tails, tails, then C = 0 and M = 1. In effect, 
C counts the number of heads, and M indicates whether all the coins match. 

Since each outcome uniquely determines C and M , we can regard them as functions 
mapping outcomes to numbers. For this experiment, the sample space is: 

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 

Now C is a function that maps each outcome in the sample space to a number as follows: 

C(HHH) = 3 C(THH) = 2 
C(HHT ) = 2 C(THT ) = 1 
C(HTH) = 2 C(TTH) = 1 
C(HTT ) = 1 C(TTT ) = 0 

Similarly, M is a function mapping each outcome another way: 

M(HHH) = 1 M(THH) = 0 
M(HHT ) = 0 M(THT ) = 0 
M(HTH) = 0 M(TTH) = 0 
M(HTT ) = 0 M(TTT ) = 1 



� � � 

2 Random Variables 

The functions C and M are examples of random variables. In general, a random variable 
is a function whose domain is the sample space. (The codomain can be anything, but 
we’ll usually use a subset of the real numbers.) Notice that the name “random variable” 
is a misnomer; random variables are actually functions! 

1.1 Indicator Random Variables 

An indicator random variable (or simply an indicator or a Bernoulli random variable) is 
a random variable that maps every outcome to either 0 or 1. The random variable M is 
an example. If all three coins match, then M = 1; otherwise, M = 0. 

Indicator random variables are closely related to events. In particular, an indicator 
partitions the sample space into those outcomes mapped to 1 and those outcomes mapped 
to 0. For example, the indicator M partitions the sample space into two blocks as follows: 

HHH �� TTT HHT HTH HTT �� THH THT TTH � 
M = 1 M = 0 

In the same way, an event partitions the sample space into those outcomes in the event 
and those outcomes not in the event. Therefore, each event is naturally associated with 
a certain indicator random variable and vice versa: an indicator for an event E is an 
indicator random variable that is 1 for all outcomes in E and 0 for all outcomes not in E. 
Thus, M is an indicator random variable for the event that all three coins match. 

1.2 Random Variables and Events 

There is a strong relationship between events and more general random variables as well. 
A random variable that takes on several values partitions the sample space into several 
blocks. For example, C partitions the sample space as follows: 

TTT TTH THT HTT � THH HTH HHT � HHH � �� � � �� � �� � �� � 
C = 0 C = 1 C = 2 C = 3 

Each block is a subset of the sample space and is therefore an event. Thus, we can regard 
an equation or inequality involving a random variable as an event. For example, the event 
that C = 2 consists of the outcomes THH , HTH , and HHT . The event C ≤ 1 consists of 
the outcomes TTT , TTH , THT , and HTT . 

Naturally enough, we can talk about the probability of events defined by equations 
and inequalities involving random variables. For example: 

Pr (M = 1) = Pr (TTT ) + Pr (HHH) 

1 1 
= + 

8 8 
1 

= 
4 
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As another example: 

Pr (C ≥ 2) = Pr (THH) + Pr (HTH) + Pr (HHT ) + Pr (HHH) 

1 1 1 1 
= + + + 

8 8 8 8 
1 

= 
2 

This is pretty wild; one normally thinks of equations and inequalities as either true or 
false. But when variables are replaced by random variables, there is a probability that the 
relationship holds! 

1.3 Conditional Probability 

Mixing conditional probabilities and events involving random variables creates no new 
difficulties. For example, Pr (C ≥ 2 M = 0) is the probability that at least two coins are |
heads (C ≥ 2), given that not all three coins are the same (M = 0). We can compute this 
probability using the definition of conditional probability: 

Pr (C ≥ 2 M = 0) = 
Pr (C ≥ 2 ∩ M = 0) | 

Pr (M = 0) 

Pr ({THH,HTH, HHT}) 
= 

Pr ({THH,HTH, HHT, HTT, THT, TTH}) 
3/8 

= 
6/8 
1 

= 
2 

The expression C ≥ 2 ∩ M = 0 on the first line may look odd; what is the set operation ∩
doing between an inequality and an equality? But recall that, in this context, C ≥ 2 and 
M = 0 are events, which sets of outcomes. So taking their intersection is perfectly valid! 

1.4 Independence 

The notion of independence carries over from events to random variables as well. Ran­
dom variables R1 and R2 are independent if 

Pr (R1 = x1 ∩ R2 = x2) = Pr (R1 = x1) · Pr (R2 = x2) 

for all x1 in the codomain of R1 and x2 in the codomain of R2. 

As with events, we can formulate independence for random variables in an equivalent 
and perhaps more intuitive way: random variables R1 and R2 are independent if and only 
if 

Pr (R1 = x1 | R2 = x2) = Pr (R1 = x1) or Pr (R2 = x2) = 0 
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4 Random Variables 

for all x1 in the codomain of R1 and x2 in the codomain of R2. In words, the probability 
that R1 takes on a particular value is unaffected by the value of R2. 

As an example, are C and M independent? Intuitively, the answer should be “no”. 
The number of heads, C, completely determines whether all three coins match; that is, 
whether M = 1. But to verify this intuition we must find some x1, x2 ∈ R such that: 

Pr (C = x1 ∩M = x2) = Pr (C = x1) · Pr (M = x2) 

One appropriate choice of values is x1 = 2 and x2 = 1. In that case, we have: 

3 1 
Pr (C = 2 ∩M = 1) = 0 but Pr (C = 2) · Pr (M = 1) = = 0 

8 
· 
4 
�

The notion of independence generalizes to a set of random variables as follows. Ran­
dom variables R1, R2, . . . , Rn are mutually independent if 

Pr (R1 = x1 ∩R2 = n = xn)x2 ∩ · · · ∩R

= Pr (R1 = x1) · Pr (R2 = x2) · · ·Pr (Rn = xn) 

for all x1, . . . , xn in the codomains of R1, . . . , Rn. 

A consequence of this definition of mutual independence is that the probability of an 
assignment to a subset of the variables is equal to the product of the probabilites of the 
individual assignments. Thus, for example, if R1, R2, . . . , R100 are mutually independent 
random variables with codomain N, then it follows that: 

Pr (R1 = 9 ∩R7 = 84 ∩R23 = 13) = Pr (R1 = 9) · Pr (R7 = 84) · Pr (R23 = 13) 

(This follows by summing over all possible values of the other random variables; we omit 
the details.) 

1.5 An Example with Dice 

Suppose that we roll two fair, independent dice. The sample space for this experiment 
consists of all pairs (r1, r2) where r1, r2 ∈ {1, 2, 3, 4, 5, 6}. Thus, for example, the outcome 
(3, 5) corresponds to rolling a 3 on the first die and a 5 on the second. The probability of 
each outcome in the sample space is 1/6 1/6 = 1/36 since the dice are fair and indepen­·
dent. 

We can regard the numbers that come up on the individual dice as random variables 
D1 and D2. So D1(3, 5) = 3 and D2(3, 5) = 5. Then the expression D1 + D2 is another 
random variable; let’s call it T for “total”. More precisely, we’ve defined: 

T (w) = D1(w) + D2(w) for every outcome w 

Thus, T (3, 5) = D1(3, 5) + D2(3, 5) = 3 + 5 = 8. In general, any function of random 
variables is itself a random variable. For example, 

√
D1 + cos(D2) is a strange, but well­

defined random variable. 
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Let’s also define an indicator random variable S for the event that the total of the two 
dice is seven: � 

1 if T (w) = 7 
S(w) = 

0 if T (w) =� 7 

So S is equal to 1 when the sum is seven and is equal to 0 otherwise. For example, 
S(4, 3) = 1, but S(5, 3) = 0. 

Now let’s consider a couple questions about independence. First, are D1 and T inde­
pendent? Intuitively, the answer would seem to be “no” since the number that comes up 
on the first die strongly affects the total of the two dice. But to prove this, we must find 
integers x1 and x2 such that: 

Pr (D1 = x1 ∩ T = x2) = Pr (D1 = x1) · Pr (T = x2) 

For example, we might choose x1 = 2 and x2 = 3. In this case, we have 

Pr (T = 2 | D1 = 3) = 0 

since the total can not be only 2 when one die alone is 3. On the other hand, we have: 

Pr (T = 2) · Pr (D1 = 3) = Pr ({1, 1}) · Pr ({(3, 1), (3, 2), . . . , (3, 6)}) 
1 6 

= = 0 
36 
·
36 

�

So, as we suspected, these random variables are not independent. 

Are S and D1 independent? Once again, intuition suggests that the answer is “no”. 
The number on the first die ought to affect whether or not the sum is equal to seven. 
But this time intuition turns out to be wrong! These two random variables actually are 
independent. 

Proving that two random variables are independent takes some work. (Fortunately, 
this is an uncommon task; usually independence is a modeling assumption. Only rarely 
do random variables unexpectedly turn out to be independent.) In this case, we must 
show that 

Pr (S = x1 ∩D1 = x2) = Pr (S = x1) · Pr (D1 = x2)	 (1) 

for all x1 ∈ {0, 1} and all x2 ∈ {1, 2, 3, 4, 5, 6}. We can work through all these possibilities 
in two batches: 

•	 Suppose that x1 = 1. Then for every value of x2 we have:


1

Pr (S = 1) = Pr ((1, 6), (2, 5), . . . , (6, 1)) = 

6 
1 

Pr (D1 = x2) = Pr ((x2, 1), (x2, 2), . . . , (x2, 6)) = 
6 

1 
Pr (S = 1 ∩D1 = x2) = Pr ((x2, 7 − x2)) = 

36


Since 1/6 1/6 = 1/36, the independence condition is satisfied.
·
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•	 Otherwise, suppose that x1 = 0. Then we have Pr (S = 0) = 1 − Pr (S = 1) = 5/6 
and Pr (D1 = x2) = 1/6 as before. Now the event 

S = 0 ∩ D1 = x2 

consists of 5 outcomes: all of (x2, 1), (x2, 2), . . . , (x2, 6) except for (x2, 7− x2). There­
fore, the probability of this event is 5/36. Since 5/6 1/6 = 5/36, the independence · 
condition is again satisfied. 

Thus, the outcome of the first die roll is independent of the fact that the sum is 7. This 
is a strange, isolated result; for example, the first roll is not independent of the fact that the 
sum is 6 or 8 or any number other than 7. But this example shows that the mathematical 
notion of independent random variables— while closely related to the intutive notion of 
“unrelated quantities”— is not exactly the same thing. 

2 Probability Distributions 

A random variable is defined to be a function whose domain is the sample space of an 
experiment. Often, however, random variables with essentially the same properties show 
up in completely different experiments. For example, some random variable that come up 
in polling, in primality testing, and in coin flipping all share some common properties. 
If we could study such random variables in the abstract, divorced from the details any 
particular experiment, then our conclusions would apply to all the experiments where 
that sort of random variable turned up. Such general conclusions could be very useful. 
There are a couple tools that capture the essential properties of a random variable, but 
leave other details of the associated experiment behind. 

The probability density function (pdf) for a random variable R with codomain V is a 
function PDFR : V → [0, 1] defined by: 

PDFR(x) = Pr (R = x) 

A consequence of this definition is that 

PDFR(x) = 1 
x∈V 

since the random variable always takes on exactly one value in the set V . 

As an example, let’s return to the experiment of rolling two fair, independent dice. As 
before, let T be the total of the two rolls. This random variable takes on values in the set 
V = {2, 3, . . . , 12}. A plot of the probability density function is shown below: 
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6/36 6 

PDFR(x)
3/36 

-

2 3 4 5 6 7 8 9 10 11 12 

x ∈ V 

The lump in the middle indicates that sums close to 7 are the most likely. The total area 
of all the rectangles is 1 since the dice must take on exactly one of the sums in V = 
{2, 3, . . . , 12}. 

A closely­related idea is the cumulative distribution function (cdf) for a random vari­
able R. This is a function CDFR : V → [0, 1] defined by: 

CDFR(x) = Pr (R ≤ x) 

As an example, the cumulative distribution function for the random variable T is shown 
below: 

1 6 

CDFR(x) 

1/2 

0 -

2 3 4 5 6 7 8 9 10 11 12 

x ∈ V 

The height of the i­th bar in the cumulative distribution function is equal to the sum of the 
heights of the leftmost i bars in the probability density function. This follows from the 
definitions of pdf and cdf: 

CDFR(x) = Pr (R ≤ x) 

= Pr (R = y) 
y≤x 

= PDFR(y) 
y≤x 

In summary, PDFR(x) measures the probability that R = x and CDFR(x) measures 
the probability that R ≤ x. Both the PDFR and CDFR capture the same information 
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about the random variable R— you can derive one from the other— but sometimes one is 
more convenient. The key point here is that neither the probability density function nor 
the cumulative distribution function involves the sample space of an experiment. Thus, 
through these functions, we can study random variables without reference to a particular 
experiment. 

For the remainder of today, we’ll look at three important distributions and some ap­
plications. 

2.1 Bernoulli Distribution 

Indicator random variables are perhaps the most common type because of their close 
association with events. The probability density function of an indicator random variable 
B is always 

PDFB(0) = p 

PDFB(1) = 1 − p 

where 0 ≤ p ≤ 1. The corresponding cumulative ditribution function is: 

CDFB(0) = p 

CDFB(1) = 1 

This is called the Bernoulli distribution. The number of heads flipped on a (possibly 
biased) coin has a Bernoulli distribution. 

2.2 Uniform Distribution 

A random variable that takes on each possible values with the same probability is called 
uniform. For example, the probability density function of a random variable U that is 
uniform on the set {1, 2, . . . , N} is: 

1
PDFU(k) = 

N 

And the cumulative distribution function is: 

k
CDFU(k) = 

N 

Uniform distributions come up all the time. For example, the number rolled on a fair die 
is uniform on the set {1, 2, . . . , 6}. 



Random Variables 9 

2.3 The Numbers Game 

Let’s play a game! I have two envelopes. Each contains an integer in the range 0, 1, . . . , 100, 
and the numbers are distinct. To win the game, you must determine which envelope con­
tains the larger number. To give you a fighting chance, I’ll let you peek at the number in 
one envelope selected at random. Can you devise a strategy that gives you a better than 
50% chance of winning? 

For example, you could just pick an evelope at random and guess that it contains the 
larger number. But this strategy wins only 50% of the time. Your challenge is to do better. 

So you might try to be more clever. Suppose you peek in the left envelope and see the 
number 12. Since 12 is a small number, you might guess that that other number is larger. 
But perhaps I’m sort of tricky and put small numbers in both envelopes. Then your guess 
might not be so good! 

An important point here is that the numbers in the envelopes may not be random. 
I’m picking the numbers and I’m choosing them in a way that I think will defeat your 
guessing strategy. I’ll only use randomization to choose the numbers if that serves my 
end: making you lose! 

2.3.1 Intuition Behind the Winning Strategy 

Amazingly, there is a strategy that wins more than 50% of the time, regardless of what 
numbers I put in the envelopes! 

Suppose that you somehow knew a number x between my lower number and higher 
numbers. Now you peek in an envelope and see one or the other. If it is bigger than x, 
then you know you’re peeking at the higher number. If it is smaller than x, then you’re 
peeking at the lower number. In other words, if you know an number x between my 
lower and higher numbers, then you are certain to win the game. 

The only flaw with this brilliant strategy is that you do not know x. Oh well. 

But what if you try to guess x? There is some probability that you guess correctly. In 
this case, you win 100% of the time. On the other hand, if you guess incorrectly, then 
you’re no worse off than before; your chance of winning is still 50%. Combining these 
two cases, your overall chance of winning is better than 50%! 

Informal arguments about probability, like this one, often sound plausible, but do not 
hold up under close scrutiny. In contrast, this argument sounds completely implausible— 
but is actually correct! 

2.3.2 Analysis of the Winning Strategy 

For generality, suppose that I can choose numbers from the set {0, 1, . . . , n}. Call the lower 
number L and the higher number H . 
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Your goal is to guess a number x between L and H . To avoid confusing equality cases, 
you select x at random from among the half­integers: 

1 1 1 1 
, 1 , 2 , . . . , n−

2 2 2 2 

But what probability distribution should you use? 

The uniform distribution turns out to be your best bet. An informal justification is that 
if I figured out that you were unlikely to pick some number— say 50
1 

2 
— then I’d always


put 50 and 51 in the evelopes. Then you’d be unlikely to pick an x between L and H and 
would have less chance of winning. 

After you’ve selected the number x, you peek into an envelope and see some number 
p. If p > x, then you guess that you’re looking at the larger number. If p < x, then you 
guess that the other number is larger. 

All that remains is to determine the probability that this strategy succeeds. We can do 
this with the usual four­step method and a tree diagram. 

Step 1: Find the sample space. You either choose x too low (< L), too high (> H), or 
just right (L < x < H). Then you either peek at the lower number (p = L) or the higher 
number (p = H). This gives a total of six possible outcomes. 

x just right

1/2

1/2

1/2

1/2

1/2

1/2

L/n

(H−L)/n

(n−H)/n

choice of x

# peeked at result probability

win

win

x too high

x too low
win

lose

win

lose

L/2n

L/2n

(H−L)/2n

(H−L)/2n

(n−H)/2n

(n−H)/2n

p=H

p=L

p=H

p=L

p=H

p=L

Step 2: Define events of interest. The four outcomes in the event that you win are 
marked in the tree diagram. 

Step 3: Assign outcome probabilities. First, we assign edge probabilities. Your guess x 
is too low with probability L/n, too high with probability (n − H)/n, and just right with 
probability (H − L)/n. Next, you peek at either the lower or higher number with equal 
probability. Multiplying along root­to­leaf paths gives the outcome probabilities. 

Step 4: Compute event probabilities. The probability of the event that you win is the 
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sum of the probabilities of the four outcomes in that event: 

L H − L n − H 
Pr (win) = + 

H − L 
+ + 

2n 2n 2n 2n 
1 H − L 

= + 
2 2n 
1 1 

+≥ 
2 2n 

The final inequality relies on the fact that the higher number H is at least 1 greater than 
the lower number L since they are required to be distinct. 

Sure enough, you win with this strategy more than half the time, regardless of the 
numbers in the envelopes! For example, if I choose numbers in the range 0, 1, . . . , 100, 

1then you win with probability at least 1 + = 50.5%. Even better, if I’m allowed only 
2 200 

numbers in the range range 0, . . . , 10, then your probability of winning rises to 55%! By 
Las Vegas standards, those are great odds! 

2.4 Binomial Distribution 

Of the more complex distributions, the binomial distribution is surely the most impor­
tant in computer science. The standard example of a random variable with a binomial 
distribution is the number of heads that come up in n independent flips of a coin; call this 
random variable H . If the coin is fair, then H has an unbiased binomial density function: 

n
PDFH(k) = 2−n 

k 

nThis follows because there are sequences of n coin tosses with exactly k heads, and 
k 

each such sequence has probability 2−n . 

Here is a plot of the unbiased probability density function PDFH(k) corresponding to 
n = 20 coins flips. The most likely outcome is k = 10 heads, and the probability falls off 
rapidly for larger and smaller values of k. These falloff regions to the left and right of the 
main hump are usually called the tails of the distribution. 
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An enormous number of analyses in computer science come down to proving that the 
tails of the binomial and similar distributions are very small. In the context of a prob­
lem, this typically means that there is very small probability that something bad happens, 
which could be a server or communication link overloading or a randomized algorithm 
running for an exceptionally long time or producing the wrong result. 

2.4.1 The General Binomial Distribution 

Now let J be the number of heads that come up on n independent coins, each of which is 
heads with probability p. Then J has a general binomial density function: 

kPDFJ(k) = 
n

p (1 − p)n−k 

k 

nAs before, there are 
k 

sequences with k heads and n − k tails, but now the probability of 
each such sequence is pk(1 − p)n−k . 

As an example, the plot below shows the probability density function PDFJ(k) corre­
sponding to flipping n = 20 independent coins that are heads with probabilty p = 0.75. 
The graph shows that we are most likely to get around k = 15 heads, as you might expect. 
Once again, the probability falls off quickly for larger and smaller values of k. 
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2.4.2 Approximating the Binomial Density Function 

There is an approximate closed­form formula for the general binomial density function, 
though it is a bit unwieldy. First, we need an approximation for a key term in the exact 

nformula, 
k 

. For convenience, let’s replace k by αn where α is a number between 0 and 
1. Then, from Stirling’s formula, we find that: 

n 2nH(α) 

αn 
≤ � 

2πα(1 − α)n 

where H(α) is the famous entropy function: 

1 1 
H(α) = α log2 + (1 − α) log2α 1 − α 

nThis upper bound on is very tight and serves as an excellent approximation. 
αn 

Now let’s plug this formula into the general binomial density function. The probability 
of flipping αn heads in n tosses of a coin that comes up heads with probability p is: 

2nH(α) 
αn(1 − p)(1−α)n · p (2)PDFJ(αn) ≤ � 

2πα(1 − α)n 

This formula is ugly as a bowling shoe, but quite useful. For example, suppose we flip a 
fair coin n times. What is the probability of getting exactly 1 n heads? Plugging α = 1/2

2

and p = 1/2 into this formula gives: 

2nH(1/2) 

2−nPDFJ(αn) ≤ � 
2π(1/2)(1 − (1/2))n 

· 

2 
= 

πn 
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Thus, for example, if we flip a fair coin 100 times, the probability of getting exactly 50 
heads is about 1/

√
50π ≈ 0.079 or around 8%. 

2.5 Approximating the Cumulative Binomial Distribution Function 

Suppose a coin comes up heads with probability p. As before, let the random variable 
J be the number of heads that come up on n independent flips. Then the probability of 
getting at most k heads is given by the cumulative binomial distribution function: 

CDFJ(k) = Pr (J ≤ k) 

k

= PDFJ(i) 
i=0 

k � �� n i= p (1 − p)n−i 

i 
i=0 

Evaluating this expression directly would be a lot of work for large k and n, so now 
an approximation would be really helpful. Once again, we can let k = αn; that is, instead 
of thinking of the absolute number of heads (k), we consider the fraction of flips that are 
heads (α). The following approximation holds provided α < p: 

1 − α 
PDFJ(αn)CDFJ(αn) ≤ 

1 − α/p 
·


2nH(α)
1 − α αn(1 − p)(1−α)n · p≤ 
1 − α/p 

· � 
2πα(1 − α)n 

In the first step, we upper bound the summmation with a geometric sum and apply the 
formula for the sum of a geometric series. (The details are dull and omitted.) Then we 
insert the approximate formula (2) for PDFJ(αn) from the preceding section. 

You have to press a lot of buttons on a calculator to evaluate this formula for a specific 
choice of α, p, and n. (Even computing H(α) is a fair amount of work!) But for large 
n, evaluating the cumulative distribution function exactly requires vastly more work! So 
don’t look gift blessings in the mouth before they hatch. Or something. 

As an example, the probability of fliping at most 25 heads in 100 tosses of a fair coin is 
obtained by setting α = 1/4, p = 1/2 and n = 100: 

1 − (1/4) 3
CDFJ(n/4) ≤ 

1 − (1/4)/(1/2) 
· PDFJ(n/4) ≤ 

2 
· 1.913 · 10−7 

This says that flipping 25 or fewer heads is extremely unlikely, which is consistent with

our earlier claim that the tails of the binomial distribution are very small. In fact, notice

that the probability of flipping 25 or fewer heads is only 50% more than the probability of
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flipping exactly 25 heads. Thus, flipping exactly 25 heads is twice as likely as flipping any 
number between 0 and 24! 

Caveat: The upper bound on CDFJ(αn) holds only if α < p. If this is not the case in your 
problem, then try thinking in complementary terms; that is, look at the number of tails 
flipped instead of the number of heads. 

3 Philosophy of Polling 

On place where the binomial distribution comes up is in polling. Polling involves not 
only some tricky mathematics, but also some philosophical issues. 

The difficulty is that polling tries to apply probabilty theory to resolve a question of 
fact. Let’s first consider a slightly different problem where the issue is more stark. What 
is the probability that 

N = 26972607 − 1 

is a prime number? One might guess 1/10 or 1/100. Or one might get sophisticated and 
point out that the Prime Number Theorem implies that only about 1 in 5 million numbers 
in this range are prime. But these answers are all wrong. There is no random process 
here. The number N is either prime or composite. You can conduct as many “repeated 
trials” as you like; the answer will always be the same. Thus, it seems probability does 
not touch upon this question. 

However, there is a probabilistic primality test due to Rabin and Miller. If N is com­
posite, there is at least a 3/4 chance that the test will discover this. (In the remaining 1/4 
of the time, the test is inconclusive; it never produces a wrong answer.) Moreover, the test 
can be run again and again and the results are independent. So if N actually is composite, 
then the probability that k = 100 repetitions of the Rabin­Miller do not discover this is at 
most: � �100 

1 

4 

So 100 consecutive inconclusive answers would be extremely convincing evidence that N 
is prime! But we still couldn’t say anything about the probability that N is prime: that is 
still either 0 or 1 and we don’t know which. 

A similar situation arises in the context of polling: we can make a convincing argument 
that a statement about public opinion is true, but can not actually say that the statement 
is true with any particular probability. Suppose we’re conducting a yes/no poll on some 
question. Then we assume that some fraction p of the population would answer “yes” 
to the question and the remaining 1 − p fraction would answer “no”. (Let’s forget about 
the people who hang up on pollsters or launch into long stories about their little dog 
Fi­Fi— real pollsters have no such luxury!) Now, p is a fixed number, not a randomly­
determined quantity. So trying to determine p by a random experiment is analogous to 
trying to determine whether N is prime or composite using a probabilistic primality test. 



16 Random Variables 

Probability slips into a poll since the pollster samples the opinions of a people selected 
uniformly and independently at random. The results are qualified by saying something 
like this: 

“One can say with 95% confidence that the maximum margin of sampling 
error is ±3 percentage points.” 

This means that either the number reported in the poll is within 3% of the actual fraction 
p or else an unlucky 1­in­20 event happened during the polling process; specifically, the 
pollster’s random sample was not representative of the population at large. This is not 
the same thing as saying that there is a 95% chance that the poll is correct; it either is or it 
isn’t, just as N is either prime or composite regardless of the Rabin­Miller test results. 
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