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Introduction to Probability 

Probability is the last topic in this course and perhaps the most important. Many 
algorithms rely on randomization. Investigating their correctness and performance re­
quires probability theory. Moreover, many aspects of computer systems, such as memory 
management, branch prediction, packet routing, and load balancing are designed around 
probabilistic assumptions and analyses. Probability also comes up in information theory, 
cryptography, artificial intelligence, and game theory. Beyond these engineering applica­
tions, an understanding of probability gives insight into many everyday issues, such as 
polling, DNA testing, risk assessment, investing, and gambling. 

So probability is good stuff. 

1 Monty Hall 

In the September 9, 1990 issue of Parade magazine, the columnist Marilyn vos Savant 
responded to this letter: 

Suppose you’re on a game show, and you’re given the choice of three doors. Behind 
one door is a car, behind the others, goats. You pick a door, say number 1, and the host, 
who knows what’s behind the doors, opens another door, say number 3, which has a 
goat. He says to you, ”Do you want to pick door number 2?” Is it to your advantage 
to switch your choice of doors? 

Craig. F. Whitaker 
Columbia, MD 

The letter roughly describes a situation faced by contestants on the 1970’s game show 
Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied that the con­
testant should indeed switch. But she soon received a torrent of letters— many from 
mathematicians— telling her that she was wrong. The problem generated thousands of 
hours of heated debate. 

Yet this is is an elementary problem with an elementary solution. Why was there so 
much dispute? Apparently, most people believe they have an intuitive grasp of probability. 
(This is in stark contrast to other branches of mathematics; few people believe they have 
an intuitive ability to compute integrals or factor large integers!) Unfortunately, approxi­
mately 100% of those people are wrong. In fact, everyone who has studied probability at 
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length can name a half­dozen problems in which their intuition led them astray— often 
embarassingly so. 

The way to avoid errors is to distrust informal arguments and rely instead on a rigor­
ous, systematic approach. In short: intuition bad, formalism good. If you insist on relying 
on intuition, then there are lots of compelling financial deals we’d love to offer you! 

1.1 The Four­Step Method 

Every probability problem involves some sort of randomized experiment, process, or 
game. And each such problem involves two distinct challenges: 

1. How do we model the situation mathematically? 

2. How do we solve the resulting mathematical problem? 

In this section, we introduce a four­step approach to questions of the form, “What is the 
probability that —– ?” In this approach, we build a probabilistic model step­by­step, 
formalizing the original question in terms of that model. Remarkably, the structured 
thinking that this approach imposes reduces many famously­confusing problems to near 
triviality. For example, as you’ll see, the four­step method cuts through the confusion sur­
rounding the Monty Hall problem like a Ginsu knife. However, more complex probability 
questions may spin off challenging counting, summing, and approximation problems— 
which, fortunately, you’ve already spent weeks learning how to solve! 

1.2 Clarifying the Problem 

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some as­
sumptions in order to have any hope of modeling the game formally: 

1. The car is equally likely to be hidden behind each of the three doors. 

2. The player is equally likely to pick each of the three doors, regardless of the car’s 
location. 

3. After the player picks a door, the host must open a different door with a goat behind 
it and offer the player the choice of staying with the original door or switching. 

4. If the host has a choice of which door to open, then he is equally likely to select each 
of them. 

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. Other 
interpretations are at least as defensible, and some actually lead to different answers. But 
let’s accept these assumptions for now and address the question, “What is the probability 
that a player who switches wins the car?” 
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1.3 Step 1: Find the Sample Space 

Our first objective is to identify all the possible outcomes of the experiment. A typical 
experiment involves several randomly­determined quantities. For example, the Monty 
Hall game involves three such quantities: 

1. The door concealing the car. 

2. The door initially chosen by the player. 

3. The door that the host opens to reveal a goat. 

Every possible combination of these randomly­determined quantities is called an out­
come. The set of all possible outcomes is called the sample space for the experiment. 

A tree diagram is a graphical tool that can help us work through the four­step ap­
proach when the number of outcomes is not too large or the problem is nicely structured. 
In particular, we can use a tree diagram to help understand the sample space of an exper­
iment. The first randomly­determined quantity in our experiment is the door concealing 
the prize. We represent this as a tree with three branches: 

car
location

C

A

B

In this diagram, the doors are called A, B, and C instead of 1, 2, and 3 because we’ll be 
adding a lot of other numbers to the picture later. Now, for each possible location of the 
prize, the player could initially chose any of the three doors. We represent this by adding 
a second layer to the tree: 
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car
location

player’s
initial 
guess

C

C

A

B

A

B

C

A

B

C

A

B

Finally, the host opens a door to reveal a goat. The host has either one choice or two, 
depending on the position of the car and the door initially selected by the player. For 
example, if the prize is behind door A and the player picks door B, then the host must 
open door C. However, if the prize is behind door A and the player picks door A, then 
the host could open either door B or door C. All of these possibilities are worked out in a 
third layer of the tree: 
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car
location

player’s
initial 
guess

door
revealed

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

B

A

B

outcome

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Now let’s relate this picture to the terms we introduced earlier: the leaves of the tree 
represent outcomes of the experiment, and the set of all leaves represents the sample space. 
Thus, for this experiment, the sample space consists of 12 outcomes. For reference, we’ve 
labeled each outcome with a triple of doors indicating: 

(door concealing prize, door initially chosen, door opened to reveal a goat) 

In these terms, the sample space is the set: 

(A, A,B), (A, A,C), (A, B, C), (A, C,B), (B, A, C), (B, B, A),
S = 

(B, B, C), (B, C, A), (C, A,B), (C, B, A), (C, C,A), (C, C,B) 

The tree diagram has a broader interpretation as well: we can regard the whole exper­
iment as “walk” from the root down to a leaf, where the branch taken at each stage is 
randomly determined. Keep this interpretation in mind; we’ll use it again later. 

1.4 Step 2: Define Events of Interest 

Our objective is to answer questions of the form “What is the probability that —– ?”, 
where the horizontal line stands for some phrase such as “the player wins by switching”, 
“the player initially picked the door concealing the prize”, or “the prize is behind door 
C”. Almost any such phrase can be modeled mathematically as an event, which is defined 
to be a subset of the sample space. 
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For example, the event that the prize is behind door C is the set of outcomes: 

{(C, A,B), (C, B, A), (C, C,A), (C, C,B)} 

The event that the player initially picked the door concealing the prize is the set of out­
comes: 

{(A, A,B), (A, A,C), (B, B, A), (B, B, C), (C, C,A), (C, C,B)} 

And what we’re really after, the event that the player wins by switching, is the set of 
outcomes: 

{(A, B, C), (A, C,B), (B, A, C), (B, C, A), (C, A,B), (C, B, A)} 

Let’s annonate our tree diagram to indicate the outcomes in this event. 

car
location

player’s
initial 
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

B

A

B

outcome

X

X

X

X

X

X

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Notice that exactly half of the outcomes are marked, meaning that the player wins by

switching in half of all outcomes. You might be tempted to conclude that a player who

switches wins with probability
1 

2
. This is wrong. The reason is that these outcomes are not 

all equally likely, as we’ll see shortly. 

1.5 Step 3: Determine Outcome Probabilities 

So far we’ve enumerated all the possible outcomes of the experiment. Now we must start 
assessing the likelihood of those outcomes. In particular, the goal of this step is to assign 
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each outcome a probability, which is a real number between 0 and 1. The sum of all 
outcome probabilities must be 1, reflecting the fact that exactly one outcome must occur. 

Ultimately, outcome probabilities are determined by the phenomenon we’re modeling 
and thus are not quantities that we can derive mathematically. However, mathematics 
can help us compute the probability of every outcome based on fewer and more elementary 
modeling decisions. In particular, we’ll break the task of determining outcome probabilities 
into two stages. 

1.5.1 Step 3a: Assign Edge Probabilities 

First, we record a probability on each edge of the tree diagram. These edge­probabilities 
are determined by the assumptions we made at the outset: that the prize is equally likely 
to be behind each door, that the player is equally likely to pick each door, and that the 
host is equally likely to reveal each goat, if he has a choice. Notice that when the host has 
no choice regarding which door to open, the single branch is assigned probability 1. 

car
location

player’s
initial 
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

1.5.2 Step 3b: Compute Outcome Probabilities 

Our next job is to convert edge probabilities into outcome probabilities. This is a purely 
mechanical process: the probability of an outcome is equal to the product of the edge­probabilities 
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on the path from the root to that outcome. For example, the probability of the topmost out­
come, (A, A, B) is 111 

3
·


3
·


2 
=
 1 

18 
.


We’ll justify this process formally next time. In the meanwhile, here is a nice informal 
justification to tide you over. Remember that the whole experiment can be regarded as 
a walk from the root of the tree diagram down to a leaf, where the branch taken at each 
step is randomly determined. In particular, the probabilities on the edges indicate how 
likely the walk is to proceed along each path. For example, a walk starting at the root in 
our example is equally likely to go down each of the three top­level branches. 

Now, how likely is such a walk to arrive at the topmost outcome, (A, A, B)? Well, there 
is a 1­in­3 chance that a walk would follow the A­branch at the top level, a 1­in­3 chance it 
would continue along the A­branch at the second level, and 1­in­2 chance it would follow 
the B­branch at the third level. Thus, it seems that about 1 walk in 18 should arrive at the 
(A, A, B) leaf, which is precisely the probability we assign it. 

Anyway, let’s record all the outcome probabilities in our tree diagram. 

car
location

player’s
initial 
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

probability

1/18

1/18

1/9

1/9

1/9

1/18

1/18

1/9

1/9

1/9

1/18

1/18

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Specifying the probability of each outcome amounts to defining a function that maps 
each outcome to a probability. This function is usually called Pr. In these terms, we’ve 
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just determined that: 

1 
Pr (A, A,B) = 

18 
1 

Pr (A, A,C) = 
18 
1 

Pr (A, B, C) = 
9 

etc. 

Earlier, we noted that the sum of all outcome probabilties must be 1 since exactly one 
outcome must occur. We can now express this symbolically: 

Pr (x) = 1 
x∈S 

In this equation, S denotes the sample space. 

Though Pr is an ordinary function, just like your old friends f and g from calculus, 
we will subject it to all sorts of horrible notational abuses that f and g were mercifully 
spared. Just for starters, all of the following are common notations for the probability of 
an outcome x: 

Pr (x) Pr(x) Pr[x] Pr x p(x) 

A sample space S and a probability function Pr : S → [0, 1] together form a probability 
space. Thus, a probability space describes all possible outcomes of an experiment and the 
probability of each outcome. A probability space is a complete mathematical model of an 
experiment. 

1.6 Step 4: Compute Event Probabilities 

We now have a probability for each outcome, but we want to determine the probability of 
an event. We can bridge this gap with a definition: the probability of an event is the sum of the 
probabilities of the outcomes it contains. As a notational matter, the probability of an event 
E ⊆ S is written Pr (E). Thus, our definition of the probability of an event can be written: 

Pr (E) = Pr (x) 
x∈E 

For example, the probability of the event that the player wins by switching is: 

Pr (switching wins) = Pr (A, B, C) + Pr (A, C,B) + Pr (B, A, C) + 

Pr (B, C, A) + Pr (C, A,B) + Pr (C, B, A) 

1 1 1 1 1 1 
= + + + + + 

9 9 9 9 9 9 
2 

= 
3 
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It seems Marilyn’s answer is correct; a player who switches doors wins the car with prob­
ability 2/3! In contrast, a player who stays with his or her original door wins with proba­
bility 1/3, since staying wins if and only if switching loses. 

We’re done with the problem! We didn’t need any appeals to intuition or ingenious 
analogies. In fact, no mathematics more difficult than adding and multiplying fractions 
was required. The only hard part was resisting the temptation to leap to an “intuitively 
obvious” answer. 

1.7 An Alternative Interpretation of the Monty Hall Problem 

Was Marilyn really right? A more accurate conclusion is that her answer is correct pro­
vided we accept her interpretation of the question. There is an equally plausible interpretation 
in which Marilyn’s answer is wrong. Notice that Craig Whitaker’s original letter does 
not say that the host is required to reveal a goat and offer the player the option to switch, 
merely that he did these things. In fact, on the Let’s Make a Deal show, Monty Hall some­
times simply opened the door that the contestant picked initially. Therefore, if he wanted 
to, Monty could give the option of switching only to contestants who picked the correct 
door initially. If this case, switching never works! 

2 Strange Dice 

Let’s play Strange Dice! The rules are simple. There are three dice, A, B, and C. Not 
surprisingly, the dice are numbered strangely, as shown below: 

BA C

2 1 3

6 7 5 9 4 8

The number on each concealed face is the same as the number on the opposite, exposed 
face. The rules are simple. You pick one of the three dice, and then I pick one of the two 
remainders. We both roll and the player with the higher number wins. 
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Which of the dice should you choose to maximize your chances of winning? Die B 
is appealling, because it has a 9, the highest number overall. Then again, die A has two 
relatively large numbers, 6 and 7. But die C has an 8 and no very small numbers at all. 
Intuition gives no clear answer! 

2.1 Analysis of Strange Dice 

We can analyze Strange Dice using our standard, four­step method for solving probability 
problems. To fully understand the game, we need to consider three different experiments, 
corresponding to the three pairs of dice that could be pitted against one another. 

2.1.1 Die A versus Die B 

First, let’s determine what happens when die A is played against die B. 

Step 1: Find the sample space. The sample space for this experiment is worked out in the 
tree diagram show below. (Actually, the whole probability space is worked out in this one 
picture. But pretend that each component sort of fades in— nyyyrrroom!— as you read 
about the corresponding step below.) 

1/3
1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

2

6

7

1
5

9

1

1

5

5

9

9

die A die B

B

B

B

B

A

A

A

A

A

winner probability
of outcome

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

A wins with
probability
      5/9

For this experiment, the sample space is a set of nine outcomes: 

S = { (2, 1), (2, 5), (2, 9), (6, 1), (6, 5), (6, 9), (7, 1), (7, 5), (7, 9) } 



12 Introduction to Probability 

Step 2: Define events of interest. We are interested in the event that the number on die A is 
greater than the number on die B. This event is a set of five outcomes: 

{ (2, 1), (6, 1), (6, 5), (7, 1), (7, 5) } 

These outcomes are marked A in the tree diagram above. 

Step 3: Determine outcome probabilities. To find outcome probabilities, we first assign prob­
abilities to edges in the tree diagram. Each number on each die comes up with probability 
1/3, regardless of the value of the other die. Therefore, we assign all edges probability 1/3. 
The probability of an outcome is the product of probabilities on the corresponding root­
to­leaf path, which means that every outcome has probability 1/9. These probabilities are 
recorded on the right side of the tree diagram. 

Step 4: Compute event probabilities. The probability of an event is the sum of the probabili­
ties of the outcomes in that event. Therefore, the probability that die A comes up greater 
than die B is: 

Pr (A > B) = Pr (2, 1) + Pr (6, 1) + Pr (6, 5) + Pr (7, 1) + Pr (7, 5) 

1 1 1 1 1 
= + + + + 

9 9 9 9 9 
5 

= 
9 

Therefore, die A beats die B more than half of the time. You had better not choose die B 
or else I’ll pick die A and have a better­than­even chance of winning the game! 

2.1.2 Die B versus Die C 

Now suppose that die B is played against die C. The tree diagram for this experiment is 
shown below. 

1/3
1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

B

winner probability
of outcome

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1

5

9

die B die C

3
4

8

8

8

3

3

4

4 B

B

B

B

C

C

C

C

B wins with
probability
     5/9
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The analysis is the same as before and leads to the conclusion that die B beats die C with 
probability 5/9 as well. Therefore, you had beter not choose die C; if you do, I’ll pick die 
B and most likely win! 

2.1.3 Die C versus Die A 

We’ve seen that A beats B and B beats C. Apparently, die A is the best and die C is the 
worst. The result of a confrontation between A and C seems a forgone conclusion. A tree 
diagram for this final experiment is worked out below. 

1/3
1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

winner probability
of outcome

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

probability
     5/9

die C die A

4

8

3

2

2

2

7

7

7

6

6

6

A

C wins with
A

C

C

A

A

C

C

C

Surprisingly, die C beats die A with probability 5/9! 

In summary, die A beats B, B beats C, and C beats A! Evidently, there is a relation 
between the dice that is not transitive! This means that no matter what die the first player 
chooses, the second player can choose a die that beats it with probability 5/9. The player 
who picks first is always at a disadvantage! 

Challenge: The dice can be renumbered so that A beats B and B beats C, each with 
probability 2/3, and C still beats A with probability 5/9. Can you find such a numbering? 
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