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Generating Functions 

Generating functions are one of the most surprising, useful, and clever inventions in 
discrete math. Roughly speaking, generating functions transform problems about se­
quences into problems about functions. This is great because we’ve got piles of mathe­
matical machinery for manipulating functions. Thanks to generating functions, we can 
apply all that machinery to problems about sequences. In this way, we can use generating 
functions to solve all sorts of counting problems. There is a huge chunk of mathematics 
concerning generating functions, so we will only get a taste of the subject. 

In this lecture, we’ll put sequences in angle brackets to more clearly distinguish them 
from the many other mathemtical expressions floating around. 

1 Generating Functions 

The ordinary generating function for the infinite sequence �g0, g1, g2, g3 . . . � is the formal 
power series: 

3G(x) = g0 + g1x + g2x 2 + g3x + · · · 
A generating function is a “formal” power series in the sense that we usually regard x 
as a placeholder rather than a number. Only in rare cases will we let x be a real number 
and actually evaluate a generating function, so we can largely forget about questions of 
convergence. Not all generating functions are ordinary, but those are the only kind we’ll 
consider here. 

Throughout the lecture, we’ll indicate the correspondence between a sequence and its 
generating function with a double­sided arrow as follows: 

2 3+ g3x�g0, g1, g2, g3, . . . � ←→ g0 + g1x + g2x + · · · 

For example, here are some sequences and their generating functions: 
3�0, 0, 0, 0, . . . � ←→ 0 + 0x + 0x 2 + 0x = 0 + · · · 
3�1, 0, 0, 0, . . . � ←→ 1 + 0x + 0x 2 + 0x = 1 + · · · 
3�3, 2, 1, 0, . . . � ←→ 3 + 2x + 1x 2 + 0x = 3 + 2x + x 2+ · · · 

The pattern here is simple: the i­th term in the sequence (indexing from 0) is the coefficient 
of xi in the generating function. 

Recall that the sum of an infinite geometric series is: 

131 + z + z 2 + z =+ · · · 
1− z 



2 Generating Functions 

This equation does not hold when z ≥ 1, but once again we won’t worry about conver­| |
gence issues. This formula gives closed­form generating functions for a whole range of 
sequences. For example: 

1 
, 1, 1, 1, . . . � 1 + x + x2 + x =�1 ←→ 3 + · · · 

1− x 

14 =�1,−1, 1,−1, . . . � − x3 + x←→ 1− x + x2 − · · · 
1 + x 

13 3�1, a, a2, a , . . . � 1 + ax + a2x2 + a x =
1− ax

←→ 3 + · · · 

14 + x6�1, 0, 1, 0, 1, 0, . . . � 1 + x2 + x =
1− x2

←→ + · · · 

2 Operations on Generating Functions 

The magic of generating functions is that we can carry out all sorts of manipulations on 
sequences by performing mathematical operations on their associated generating func­
tions. Let’s experiment with various operations and characterize their effects in terms of 
sequences. 

2.1 Scaling 

Multiplying a generating function by a constant scales every term in the associated se­
quence by the same constant. For example, we noted above that: 

14 6�1, 0, 1, 0, 1, 0, . . . � ←→ 1 + x 2 + x + x =
1− x2 

+ · · · 

Multiplying the generating function by 2 gives 

2 
= 2 + 2x 2 + 2x 4 + 2x 6 

1− x2 
+ · · · 

which generates the sequence: 
, 0, 2, 0, 2, 0, . . . ��2

Rule 1 (Scaling Rule). If 
x),�f0, f1, f2, . . . � ←→ F (

then 
�cf0, cf1, cf2, F (x).. . . � ←→ c ·
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Proof. 

� cf0, cf1, cf2, . . . � cf0 + cf1x + cf2x 2 ←→ + · · · 
= c · (f0 + f1x + f2x 2 + · · · ) 
= cF (x) 

2.2 Addition 

Adding generating functions corresponds to adding the two sequences term by term. For 
example, adding two of our earlier examples gives: 

1 � 1, 1, 1, 1, 1, 1, . . . � ←→ 
1− x 

1 
+ � 1, − 1, 1, − 1, 1, − 1, . . . � ←→ 

1 + x 

1 1 
2, 0, 2, 0, 2, 0, . . . +� � ←→ 

1− x 1 + x 

We’ve now derived two different expressions that both generate the sequence � 2, 0, 2, 0, . . . � . 
Not surprisingly, they turn out to be equal: 

1 1 (1 + x) + (1− x) 2 
+ = = 

1− x 1 + x (1− x)(1 + x) 1− x2 

Rule 2 (Addition Rule). If 

� f0, f1, f2, . . . � ←→ F (x), and 

� g0, g1, g2, . . . � ←→ G(x), 

then 
� f0 + g0, f1 + g1, f2 + g2, . . . � ←→ F (x) + G(x). 

Proof. 
∞� 

� f0 + g0, f1 + g1, f2 + g2, . . . � ←→ (fn + gn)x n 

n=0� � � � 
∞� ∞� 

= fnx n + gnx n 

n=0 n=0 

= F (x) + G(x) 



� �� � 

� � 

4 Generating Functions 

2.3 Right Shifting 

Let’s start over again with a simple sequence and its generating function: 

1 
, 1, 1, 1, . . . � ←→ �1

1− x 

Now let’s right­shift the sequence by adding k leading zeros: 
k+1 k+2 k+3�0, 0, . . . , 0, 1, 1, 1, . . . � x k + x + x + x� �� � ←→ + · · · 

k zeroes 
k 3 = x · (1 + x + x 2 + x + · · · ) 

kx
= 

1− x 

Evidently, adding k leading zeros to the sequence corresponds to multiplying the gener­
ating function by xk. This holds true in general. 

Rule 3 (Right­Shift Rule). If �f0, f1, f2, . . . � ←→ F (x), then: 

�0, 0, . . . , 0, f0, f1, f2, . . . � ←→ x k F (x)� �� � ·
k zeroes 

Proof. 
k zeroes 

f0x k + f1x k+1 + f2x k+20, 0, . . . , 0, f0, f1, f2, . . . �� ←→ + · · · 
3 = x k · (f0 + f1x + f2x 2 + f3x + · · · ) 

k = x F (x)·

2.4 Differentiation 

What happens if we take the derivative of a generating function? As an example, let’s 
differentiate the now­familiar generating function for an infinite sequence of 1’s. 

d 1d 
(1 + x + x 2 + x 3 + x 4 = 

dx 
+ · · · ) 

dx 1− x 
131 + 2x + 3x 2 + 4x = 

2 
+ · · · 

(1− x)
1 �1, 2, 3, 4, . . . � ←→ 

(1− x)2 

We found a generating function for the sequence �1, 2, 3, 4, . . . �! 
In general, differentiating a generating function has two effects on the corresponding 

sequence: each term is multiplied by its index and the entire sequence is shifted left one 
place. 
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Rule 4 (Derivative Rule). If 

�f0, f1, f2, f3, . . . � ←→ F (x), 

then 
�(x).�f1, 2f2, 3f3, . . . � ←→ F

Proof. 

�f1, 2f2, 3f3, . . . � = f1 + 2f2x + 3f3x 2 + · · · 
d 

(f0 + f1x + f2x 2 + f3x 3 += 
dx 

· · · ) 

d 
= F (x)

dx 

The Derivative Rule is very useful. In fact, there is frequent, independent need for 
each of differentiation’s two effects, multiplying terms by their index and left­shifting one 
place. Typically, we want just one effect and must somehow cancel out the other. For ex­
ample, let’s try to find the generating function for the sequence of squares, �0, 1, 4, 9, 16, . . . �. 
If we could start with the sequence �1, 1, 1, 1, . . . � and multiply each term by its index two 
times, then we’d have the desired result: 

0, 1 1, 2 2, 3 3, . . . � = �0, 1, 4, 9, . . . ��0 · · · ·

A challenge is that differentiation not only multiplies each term by its index, but also 
shifts the whole sequence left one place. However, the Right­Shift Rule 3 tells how to 
cancel out this unwanted left­shift: multiply the generating function by x. 

Our procedure, therefore, is to begin with the generating function for �1, 1, 1, 1, . . . �, 
differentiate, multiply by x, and then differentiate and multiply by x once more. 

1 �1, 1, 1, 1, . . . � ←→ 
1 − x 
d 1 1 

=�1, 2, 3, 4, . . . � ←→ 
dx 1 − x (1 − x)2 

1 x 
=�0, 1, 2, 3, . . . � ←→ x · 

(1 − x)2 (1 − x)2 

d x 1 + x 
=�1, 4, 9, 16, . . . � ←→ 

dx (1 − x)2 (1 − x)3 

1 + x x(1 + x) 
=�0, 1, 4, 9, . . . � ←→ x · 

(1 − x)3 (1 − x)3 

Thus, the generating function for squares is: 

x(1 + x) 

(1 − x)3 
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3 The Fibonacci Sequence 

Sometimes we can find nice generating functions for more complicated sequences. For 
example, here is a generating function for the Fibonacci numbers: 

x �0, 1, 1, 2, 3, 5, 8, 13, 21, . . . � ←→ 
1 − x− x2 

The Fibonacci numbers are a fairly nasty bunch, but the generating function is simple! 

We’re going to derive this generating function and then use it to find a closed form for 
the n­Fibonacci number. Of course, we already have a closed form for Fibonacci numbers, 
obtained from the cookbook procedure for solving linear recurrences. But there are a 
couple reasons to cover the same ground again. First, we’ll gain some insight into why 
the cookbook method for linear recurrences works. And, second, the techniques we’ll use 
are applicable to a large class of recurrence equations, including some that we have no 
other way to tackle. 

3.1 Finding a Generating Function 

Let’s begin by recalling the definition of the Fibonacci numbers: 

f0 = 0 

f1 = 1 

fn = fn−1 + fn−2 (for n ≥ 2) 

We can expand the final clause into an infinite sequence of equations. Thus, the Fibonacci 
numbers are defined by: 

f0 =0 

f1 =1 

f2 =f1 + f0 

f3 =f2 + f1 

f4 =f3 + f2 

. . . 

Now the overall plan is to define a function F (x) that generates the sequence on the left 
side of the equality symbols, which are the Fibonacci numbers. Then we derive a function 
that generates the sequence on the right side. Finally, we equate the two and solve for 
F (x). Let’s try this. First, we define: 

3 + f4x 4F (x) = f0 + f1x + f2x 2 + f3x + · · · 
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7 Generating Functions 

Now we need to derive a generating function for the sequence: 

, 1, f1 + f0, f2 + f1, f3 + f2, . . . �� 0

One approach is to break this into a sum of three sequences for which we know generating 
functions and then apply the Addition Rule: 

0,	 1, 0, 0, 0, x�	 . . . � ←→ 
0, f0, f1, f2, f3,	 xF (x)�	 . . . � ←→ 

+	 � 0, 0, f0, f1, f2, . . . � ←→ x2F (x) 
0, 1 + f0, f1 + f0, f2 + f1, f3 + f2, . . . � ←→ x + xF (x) + x2F (x) 

This sequence is almost identical to the right sides of the Fibonacci equations. The one 
blemish is that the second term is 1 + f0 instead of simply 1. However, this amounts to 
nothing, since f0 = 0 anyway. 

Now if we equate F (x) with the new function x+xF (x)+x2F (x), then we’re implicitly 
writing down all of the equations that define the Fibonacci numbers in one fell swoop: 

F (x) = f0 + f1 x + f2 x2 + f3 x3 + f4 x4 + . . . 

x + xF (x) + x2F (x) = 0 + (1 + f0) x + (f1 + f0) x2 + (f2 + f1) x3 + (f3 + f2) x4 + · · · 

Solving for F (x) gives the generating function for the Fibonacci sequence: 

F (x) = x + xF (x) + x 2F (x) 
x ⇒ F (x) =

1− x− x2 

Sure enough, this is the simple generating function we claimed at the outset! 

3.2	 Finding a Closed Form 

Why should one care about the generating function for a sequence? There are several 
answers, but here is one: if we can find a generating function for a sequence, then we can 
often find a closed form for the n­th coefficient— which can be pretty useful! For example, 
a closed form for the coefficient of xn in the power series for x/(1 − x − x2) would be an 
explicit formula for the n­th Fibonacci number. 

So our next task is to extract coefficients from a generating function. There are sev­
eral approaches. For a generating function that is a ratio of polynomials, we can use the 
method of partial fractions, which you learned in calculus. Just as the terms in a par­
tial fractions expansion are easier to integrate, the coefficients of those terms are easy to 
compute. 

Let’s try this approach with the generating function for Fibonacci numbers. First, we 
factor the denominator: 

1− x− x 2 = (1− α1x)(1− α2x) 
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8 Generating Functions 

1 1where α1 = 
2
(1 +

√
5) and α2 = 

2
(1−

√
5). Next, we find A1 and A2 which satisfy: 

x A1 A2 
= + 

1− x − x2 1− α1x 1− α2x 

We do this by plugging in various values of x to generate linear equations in A1 and A2. 
We can then find A1 and A2 by solving a linear system. This gives: 

1 1 
A1 = = 

α1 − α2 

√
5 
1−1 

A2 = = 
α1 − α2 

−√
5 

Substituting into the equation above gives the partial fractions expansion of F (x): 

x 1 1 1 
= 

1− x − x2 
√

5 1− α1x 
− 

1− α2x 

Each term in the partial fractions expansion has a simple power series given by the geo­
metric sum formula: 

1 2= 1 + α1x + α2 
1x 

1− α1x 
+ · · · 

1 2= 1 + α2x + α2 
2x 

1− α2x 
+ · · · 

Substituting in these series gives a power series for the generating function: 

1 1 1 
F (x) = √

5 1− α1x 
− 

1− α2x 
1 � 2 

� 
2 = √

5 
(1 + α1x + α2

2x1x + · · · )− (1 + α2x + α2 + · · · ) 

αn 
1 − αn 

fn = √
5 

2 ⇒ �� � 
1−
√

5 
� �n n

1 1 +
√

5 
�

= √
5 2 

− 
2 

This is the same scary formula for the n­th Fibonacci number that we found using the 
method for solving linear recurrences. And this alternate approach sheds some light on 
that method. In particular, the strange rules involving repeated roots of the characteristic 
equation are reflections of the rules for finding a partial fractions expansion! 

4 Counting with Generating Functions 

Generating functions are particularly useful for solving counting problems. In particular, 
problems involving choosing items from a set often lead to nice generating functions. 
When generating functions are used in this way, the coefficient of xn is the number of 
ways to choose n items. 
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4.1 Choosing Distinct Items from a Set 

The generating function for binomial coefficients follows directly from the Binomial The­
orem: �� � � � � � � � � � � � � � � � � 

k k k k k k k 2 k k , , , . . . , , 0, 0, 0, . . . + x + x + x 
0 1 2 k 

←→ 
0 1 2

+ · · ·
k 

= (1 + x)k 

Thus, the coefficient of xn in (1 + x)k is the number of ways to choose n distinct items 
kfrom a k­element set. For example, the coefficient of x2 is , the number of ways to 
2 

choose 2 items from a k­element set. Similarly, the coefficient of xk+1 is the number of 
ways to choose k + 1 items from a k­element set, which is zero. 

4.2 Building Generating Functions that Count 

Often we can translate the description of a counting problem directly into a generating 
function for the solution. For example, we could figure out that (1 + x)k generates the 
number of ways to select n distinct items from a k­element subset without resorting to 
the Binomial Theorem or even fussing with binomial coefficients! 

Here is how. First, consider a single­element set {a1}. The generating function for the 
number of ways to choose n elements from this set is simply 1 + x: we have 1 way to 
choose zero elements, 1 way to choose one element, and 0 ways to choose more than one 
element. Similarly, the number of ways to choose n elements from the set {a2} is also 
given by the generating function 1 + x. The fact that the elements differ in the two cases 
is irrelevant. 

Now here is the the main trick: the generating function for choosing elements from a union of 
disjoint sets is the product of the generating functions for choosing from each set. We’ll justify this 
in a moment, but let’s first look at an example. According to this principle, the generating 
function for the number of ways to choose n elements from the {a1, a2} is: 

(1 + x) (1 + x) = (1 + x)2 = 1 + 2x + x 2 � �� � · � �� � � �� � 
OGF for OGF for OGF for 

{a1, a2}{a1} {a2} 

Sure enough, for the set {a1, a2}, we have 1 way to choose zero elements, 2 ways to choose 
one element, 1 way to choose two elements, and 0 ways to choose more than two ele­
ments. 

Repeated application of this rule gives the generating function for choosing n items 
from a k­element set {a1, a2, . . . , ak}: 

(1 + x) (1 + x) (1 + x) = (1 + x)k � �� � · � �� � · · · � �� � � �� � 
OGF for OGF for OGF for OGF for 

{a1, a2, . . . , ak}{a1} {a2} {ak} 
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This is the same generating function that we obtained by using the Binomial Theorem. 
But this time around we translated directly from the counting problem to the generating 
function. 

We can extend these ideas to a general principle: 

Rule 5 (Convolution Rule). Let A(x) be the generating function for selecting items from set A, 
and let B(x) be the generating function for selecting items from set B. If A and B are disjoint, 
then the generating function for selecting items from the union A∪B is the product A(x) ·B(x). 

This rule is rather ambiguous: what exactly are the rules governing the selection of 
items from a set? Remarkably, the Convolution Rule remains valid under many inter­
pretations of selection. For example, we could insist that distinct items be selected or 
we might allow the same item to be picked a limited number of times or any number of 
times. Informally, the only restrictions are that (1) the order in which items are selected 
is disregarded and (2) restrictions on the selection of items from sets A and B also apply 
in selecting items from A ∪ B. (Formally, there must be a bijection between n­element 
selections from A ∪ B and ordered pairs of selections from A and B containing a total of 
n elements.) 

Proof. Define: 

∞ ∞ ∞

A(x) = anx n , B(x) = bnx n , C(x) = A( B(x) = cnx n .x) ·
n=0 n=0 n=0 

Let’s first evaluate the product A(x) B(x) and express the coefficient cn in terms of the ·
a and b coefficients. We can tabulate all of the terms in this product in a table: 

b0x
0 b1x

1 b2x
2 b3x

3 . . . 

a0x
0 a0b0x

0 a0b1x
1 a0b2x

2 a0b3x
3 . . . 

a1x
1 a1b0x

1 a1b1x
2 a1b2x

3 . . . 

a2x
2 a2b0x

2 a2b1x
3 . . . 

a3x
3 a3b0x

3 . . . 

. . . . . . 

Notice that all terms involving the same power of x lie on a /­sloped diagonal. Collecting 
these terms together, we find that the coefficient of xn in the product is: 

cn = a0bn + a1bn−1 + a2b + anb0n−2 + · · ·
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Now we must show that this is also the number of ways to select n items from A ∪ B. 
In general, we can select a total of n items from A ∪ B by choosing j items from A and 
n − j items from B, where j is any number from 0 to n. This can be done in ajbn−j ways. 
Summing over all the possible values of j gives a total of 

a0bn + a1bn−1 + a2bn−2 + + anb0· · ·

ways to select n items from A ∪ B. This is precisely the value of cn computed above. 

The expression cn = a0bn +a1bn−1+a2b +anb0 may be familiar from a signal pro­n−2+· · ·
cessing course; the sequence �c0, c1, c2, . . . � is the convolution of sequences �a0, a1, a2, . . . �
and �b0, b1, b2, . . . �. 

4.3 Choosing Items with Repetition 

The first counting problem we considered asked for the number of ways to select a dozen 
doughnuts when there were five varieties available. We can generalize this question as 
follows: in how many ways can we select k items from an n­element set if we’re allowed 
to pick the same item multiples times? In these terms, the doughnut problem asks in how 
many ways we can select a dozen doughnuts from the set: 

{chocolate, lemon­filled, sugar, glazed, plain} 

if we’re allowed to pick several doughnuts of the same variety. Let’s approach this ques­
tion from a generating functions perspective. 

Suppose we choose n items (with repetition allowed) from a set containing a single 
item. Then there is one way to choose zero items, one way to choose one item, one way 
to choose two items, etc. Thus, the generating function for choosing n elements with 
repetition from a 1­element set is: 

3�1, 1, 1, 1, . . . � 1 + x + x 2 + x +←→ · · · 
1 

= 
1 − x 

The Convolution Rule says that the generating function for selecting items from a 
union of disjoint sets is the product of the generating functions for selecting items from 
each set: 

1 1 1 1 
= 

1 − x 
· 

1 − x 
· · · 

1 − x (1 − x)n � �� � � �� � � �� � � �� � 
OGF for OGF for OGF for OGF for 
{a1} {a2} {an} {a1, a2, . . . , an} 

Therefore, the generating function for selecting items from a n­element set with repetition 
allowed is 1/(1 − x)n . 
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Now we need to find the coefficients of this generating function. We could try to use 
partial fractions, but (1 − x)n has a nasty repeated root at 1. An alternative is to use 
Taylor’s Theorem: 

Theorem 1 (Taylor’s Theorem). 

f ��(0) f ���(0) f (k)(0) 2 3 kf(x) = f(0) + f �(0)x + x + x + + x + 
2! 3! 

· · ·
k! 

· · · 

This theorem says that the k­th coefficient of 1/(1 − x)n is equal to its k­th derivative 
evaluated at 0 and divided by k!. And computing the k­th derivative turns out not to be 
very difficult. Let 

g(x) = 
1 

(1 − x)n 
= (1 − x)−n 

Then we have: 

G�(x) = n(1 − x)−n−1 

G��(x) = n(n + 1)(1 − x)−n−2 

G���(x) = n(n + 1)(n + 2)(1 − x)−n−3 

G(k)(x) = n(n + 1) · · · (n + k − 1)(1 − x)−n−k 

Thus, the coefficient of xk in the generating function is: 

G(k)(0)/k! = 
n(n + 1) · · · (n + k − 1) 

k! 
(n + k − 1)! 

= 
(n − 1)! k! 

n + k − 1 
= 

k 

Therefore, the number of ways to select k items from an n­element set with repetition 
allowed is: � � 

n + k − 1 

k 

This makes sense, since there is a bijection between such selections and (n + k − 1)­bit 
sequences with k zeroes (representing the items) and n−1 ones (separating the n different 
types of item). 

5 An “Impossible” Counting Problem 

So far everything we’ve done with generating functions we could have done another way. 
But here is an absurd counting problem— really over the top! In how many ways can we 
fill a bag with n fruits subject to the following constraints? 
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• The number of apples must be even. 

• The number of bananas must be a multiple of 5. 

• There can be at most four oranges. 

• There can be at most one pear.


For example, there are 7 ways to form a bag with 6 fruits:


Apples 6 4 4 2 2 0 0 
Bananas 0 0 0 0 0 5 5 
Oranges 0 2 1 4 3 1 0 

Pears 0 0 1 0 1 0 1 

These constraints are so complicated that the problem seems hopeless! But let’s see what 
generating functions reveal. 

Let’s first construct a generating function for selecting apples. We can select a set of 
0 apples in one way, a set of 1 apples in zero ways (since the number of apples must be 
even), a set of 2 applies in one way, a set of 3 apples in zero ways, and so forth. So we 
have: 

14 6A(x) = 1 + x 2 + x + x + = · · · 
1− x2 

Similarly, the generating function for selecting bananas is: 
110 15B(x) = 1 + x 5 + x + x + · · · =

1− x5 

Now, we can select a set of 0 oranges in one way, a set of 1 orange in one ways, and so on. 
However, we can not select more than four oranges, so we have the generating function: 

3 4O(x) = 1 + x + x 2 + x + x =
1− x5 

1− x 

Here we’re using the geometric sum formula. Finally, we can select only zero or one pear, 
so we have: 

P (x) = 1 + x 

The Convolution Rule says that the generating function for selecting from among all 
four kinds of fruit is: 

1 1 
A(x)B(x)O(x)P (x) = 

1− x5 

(1 + x)
1− x2 1− x5 1− x 

1 
= 

(1− x)2 

3 = 1 + 2x + 3x 2 + 4x + · · · 

Almost everything cancels! We’re left with 1/(1− x)2, which we found a power series for 
earlier: the coefficient of xn is simply n + 1. Thus, the number of ways to form a bag of n 
fruits is just n + 1. This is consistent with the example we worked out, since there were 7 
different fruit bags containing 6 fruits. Amazing! 
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