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Two different subsets of the ninety 25­digit numbers shown above have the same sum. 
For example, maybe the sum of the numbers in the first column is equal to the sum of the 
numbers in the second column. Can you find two such subsets? This is a very difficult 
computational problem. But we’ll prove that such subsets must exist! This is the sort of 
weird conclusion one can reach by tricky use of counting, the topic of this chapter. 

Counting seems easy enough: 1, 2, 3, 4, etc. This explicit approach works well for 
counting simple things, like your toes, and for extremely complicated things for which 
there’s no identifiable structure. However, subtler methods can help you count many 
things in the vast middle ground, such as: 

•	 The number of different ways to select a dozen doughnuts when there are five vari­
eties available. 

•	 The number of 16­bit numbers with exactly 4 ones. 

Counting is useful in computer science for several reasons: 

•	 Determining the time and storage required to solve a computational problem— a 
central objective in computer science— often comes down to solving a counting 
problem. 
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•	 Counting is the basis of probability theory, which in turn is perhaps the most im­
portant topic this term. 

•	 Two remarkable proof techniques, the “pigeonhole principle” and “combinatorial 
proof”, rely on counting. These lead to a variety of interesting and useful insights. 

We’re going to present a lot of rules for counting. These rules are actually theorems, 
but we’re generally not going to prove them. Our objective is to teach you counting as a 
practical skill, like integration. And most of the rules seem “obvious” anyway. 

1 Counting One Thing by Counting Another 

How do you count the number of people in a crowded room? We could count heads, 
since for each person there is exactly one head. Alternatively, we could count ears and 
divide by two. Of course, we might have to adjust the calculation if someone lost an ear 
in a pirate raid or someone was born with three ears. The point here is that we can often 
count one thing by counting another, though some fudge factors may be required. This is 
the central theme of counting, from the easiest problems to the hardest. 

In more formal terms, every counting problem comes down to determining the size of 
some set. The size or cardinality of a set S is the number of elements in S and is denoted 
|S|. In these terms, we’re claiming that we can often find the size of one set S by finding the 
size of a related set T . We already have a mathematical tool for relating one set to another: 
relations. Not surprisingly, a particular kind of relation is at the heart of counting. 

1.1 Functions 

Functions like f(x) = x2 + 1 and g(x) = tan−1(x) are surely quite familiar from calculus. 
We’re going to use functions for counting as well, but in a way that might not be familiar. 
Instead of using functions that map one real number to another, we’ll use functions that 
relate elements of finite sets. 

In order to count accurately, we need to carefully define the notion of a function. For­
mally, a function f : X Y is a relation between two sets, X and Y , that relates every→
element of X to exactly one element of Y . The set X is called the domain of the function f , 
and Y is called the codomain. Here is an illustration of a function: 
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X f Y 

-a 1 

domain 2 codomainb PPPPPPq
� 3c 

�����1PPPPPPd q 4 
-e 5 

In this example, the domain is the set X = {a, b, c, d, e} and the range is the set Y = 
{1, 2, 3, 4, 5}. Related elements are joined by an arrow. This relation is a function because 
every element on the left is related to exactly one element on the right. In graph­theoretic 
terms, this is a function because every element on the left has degree exactly 1. If x is an 
element of the domain, then the related element in the codomain is denoted f(x). We 
often say f maps x to f(x). In this case, f maps a to 1, b to 3, c to 4, d to 3 and e to 5. 
Equivalently, f(a) = 1, f(b) = 3, f(c) = 4, f(d) = 3, and f(e) = 5. 

The relations shown below are not functions: 

X Y X Y 

a -PPPPPPqb PPPPPPqc PPPPPPqd ������1 

1 

2 

3 

4 

a 

b 

c 

d 

-

PPPPPPq 

1 

2 

3 

4 

e - 5 e - 5 

The relation on the left is not a function because a is mapped to two elements of the 
codomain. The relation on the right is not a function because b and d are mapped to zero 
elements of the codomain. Tsk­tsk! 

1.2 Bijections 

The definition of a function is rather asymmetric; there are restrictions on elements in 
the domain, but not on elements in the codomain. A bijection or bijective function is 
a function f : X Y that maps exactly one element of the domain to each element of →
the codomain. In graph terms, both domain and codomain elements are required to have 
degree exactly 1 in a bijective function. Here is an example of a bijection: 
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X f Y 

a 1PPPPPP� 
domain �q 2 codomainb PPPPPPc � q 3PPPPPPqd � 4 

-e 5 

In contrast, these relations that are not bijections: 

X Y X Y X Y 

a - 1 a - 1 a - 1 

b PPPPPPqc PPPPPPqd � 
� 

� 
� 

��3 

e � 
� 

� 
� 

��3 

2 

3 

4 

b PPPPPPqc Q
Q

Q
Q

QQs 
d � 

� 
� 

� 
��3 2 

3 

4 

5 

b 

c 

d 

e 

PPPPPPq� 
� 

� 
� 

��3 

� 
� 

� 
� 

��3 

2 

3 

4 

The first function is not bijective because 3 is related to two elements of the domain. The 
second function is not bijective because 4 is related to zero elements of the domain. The last 
relation is not even a function, because b is associated with zero elements of the domain. 

Bijective functions are also found in the more­familiar world of real­valued functions. 
For example, f(x) = 6x+5 is a bijective function with domain and codomain R. For every 
real number y in the codomain, f(x) = y for exactly one real number x in the domain. On 
the other hand, f(x) = x2 is not a bijective function. The number 4 in the codomain is 
related to both 2 and ­2 in the domain. 

1.3 The Bijection Rule 

If we can pair up all the girls at a dance with all the boys, then there must be an equal 
number of each. This simple observation generalizes to a powerful counting rule: 

Rule 1 (Bijection Rule). If there exists a bijection f : A → B, then |A = B .| | |

In the example, A is the set of boys, B is the set of girls, and the function f defines how 
they are paired. 

The Bijection Rule acts as a magnifier of counting ability; if you figure out the size of 
one set, then you can immediately determine the sizes of many other sets via bijections. 
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For example, let’s return to two sets mentioned earlier: 

A = all ways to select a dozen doughnuts when five varieties are available 

B = all 16­bit sequences with exactly 4 ones 

Let’s consider a particular element of set A: 

0 0 0 0 0 0 0 0 � 0 0 0 0���� ���� � �� ���� ���� 
chocolate lemon­filled sugar glazed plain 

We’ve depicted each doughnut with a 0 and left a gap between the different varieties. 
Thus, the selection above contains two chocolate doughnuts, no lemon­filled, six sugar, 
two glazed, and two plain. Now let’s put a 1 into each of the four gaps: 

���� 1 0 0 0 0 0 0 � 1 0 0 1 0 00 0 1 ���� � �� ���� ���� 
chocolate lemon­filled sugar glazed plain 

We’ve just formed a 16­bit number with exactly 4 ones— an element of B! 

This example suggests a bijection from set A to set B: map a dozen doughnuts consist­
ing of: 

c chocolate, l lemon­filled, s sugar, g glazed, and p plain 

to the sequence: 

�0 . . . 0 1 �0 . . . 0 1 �0 . . . 0 1 �0 . . . 0 1 �0 . . . 0�� � �� � �� � �� � �� � 
c l s g p 

The resulting sequence always has 16 bits and exactly 4 ones, and thus is an element of 
B. Moreover, the mapping is a bijection; every such bit sequence is mapped to by exactly 
one order of a dozen doughnuts. Therefore, |A = B by the Bijection Rule! | | | 

This demonstrates the magnifying power of the bijection rule. We managed to prove 
that two very different sets are actually the same size— even though we don’t know 
exactly how big either one is. But as soon as we figure out the size of one set, we’ll 
immediately know the size of the other. 

This particular bijection might seem frighteningly ingenious if you’ve not seen it be­
fore. But you’ll use essentially this same argument over and over and over, and soon 
you’ll consider it boringly routine. 

1.4 Sequences 

The Bijection Rule lets us count one thing by counting another. This suggests a general 
strategy: get really good at counting just a few things and then use bijections to count 
everything else: 
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problems
sequence−counting

S

T

all counting problems

bijection

This is precisely the strategy we’ll follow. In particular, we’ll get really good at count­
ing sequences. When we want to determine the size of some other set T , we’ll find a bi­
jection from T to a set of sequences S. Then we’ll use our super­ninja sequence­counting 
skills to determine |S|, which immediately gives us T . We’ll need to hone this idea | |
somewhat as we go along, but that’s pretty much the plan! 

In order to pull this off, we need to clarify some issues concerning sequences and sets. 
Recall that a set is an unordered collection of distinct elements. A set is often represented 
by listing its elements inside curly­braces. For example, {a, b, c} is a set, and {c, b, a} is 
another way of writing the same set. On the other hand, {a, b, a} is not a set, because 
element a appears twice. 

On the other hand, a sequence is an ordered collection of elements (called components 
or terms) that are not necessarily distinct. A sequence is often written by listing the terms 
inside parentheses. For example, (a, b, c) is a sequence, and (c, b, a) is a different sequence. 
Furthermore (a, b, a) is a perfectly valid three­term sequence. 

The distinction between sets and sequences is crucial for everything that follows. If 
you don’t keep the distinction clear in your mind, you’re doomed! 

2 Two Basic Counting Rules 

We’ll harvest our first crop of counting problems with two basic rules. 

2.1 The Sum Rule 

Linus allocates his big sister Lucy a quota of 20 crabby days, 40 irritable days, and 60 
generally surly days. On how many days can Lucy be out­of­sorts one way or another? 
Let set C be her crabby days, I be her irritable days, and S be the generally surly. In these 
terms, the answer to the question is C ∪ I ∪ S . Now assuming that she is permitted at | |
most one bad quality each day, the size of this union of sets is given by the Sum Rule: 
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Rule 2 (Sum Rule). If A1, A2, . . . , An are disjoint sets, then: 

A1 ∪ A2 ∪ . . . ∪ An = A1 + A2 + . . . +| | | | | | |An| 

Thus, according to Linus’ budget, Lucy can be out­of­sorts for: 

= C I SC ∪ I ∪ S| | | | ∪ | | ∪ | | 
= 20 + 40 + 60 

= 120 days 

Notice that the Sum Rule holds only for a union of disjoint sets. Finding the size of a 
union of intersecting sets is a more complicated problem that we’ll take up later. 

2.2 The Product Rule 

The product rule gives the size of a product of sets. Recall that if P1, P2, . . . , Pn are sets, 
then 

P1 × P2 × . . .× Pn 

is the set of all sequences whose first term is drawn from P1, second term is drawn from 
P2 and so forth. 

Rule 3 (Product Rule). If P1, P2, . . . Pn are sets, then: 

P1 × P2 × . . .× Pn = P1| | | | · |P2| · · · |Pn| 

Unlike the sum rule, the product rule does not require the sets P1, . . . , Pn to be disjoint. 
For example, suppose a daily diet consists of a breakfast selected from set B, a lunch from 
set L, and a dinner from set D: 

B = {pancakes, bacon and eggs, bagel, Doritos}


L = {burger and fries, garden salad, Doritos}


D = {macaroni, pizza, frozen burrito, pasta, Doritos}


Then B × L×D is the set of all possible daily diets. Here are some sample elements: 

(pancakes, burger and fries, pizza) 

(bacon and eggs, garden salad, pasta) 

(Doritos, Doritos, frozen burrito) 

The Product Rule tells us how many different daily diets are possible: 

LB × L×D| | = |B| · | | · |D| 
= 4 3 5· ·
= 60 
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2.3 Putting Rules Together 

Few counting problems can be solved with a single rule. More often, a solution is a flury 
of sums, products, bijections, and other methods. Let’s look at some examples that bring 
more than one rule into play. 

Passwords 

The sum and product rules together are useful for solving problems involving passwords, 
telephone numbers, and license plates. For example, on a certain computer system, a 
valid password is a sequence of between six and eight symbols. The first symbol must be 
a letter (which can be lowercase or uppercase), and the remaining symbols must be either 
letters or digits. How many different passwords are possible? 

Let’s define two sets, corresponding to valid symbols in the first and subsequent posi­
tions in the password. 

F = a, b, . . . , z, A, B, . . . , Z}{
S = a, b, . . . , z, A, B, . . . , Z, 0, 1, . . . , 9}{

In these terms, the set of all possible passwords is: 

(F × S5) ∪ (F × S6) ∪ (F × S7) 

Thus, the length­six passwords are in set F×S5, the length­seven passwords are in F×S6 , 
and the length­eight passwords are in F × S7. Since these sets are disjoint, we can apply 
the Sum Rule and count the total number of possible passwords as follows: 

=
 F ×
S7 Sum Rule
S5 S6 S7 F × S5 F × S6(F × ) ∪ (F × ) ∪ (F × )
 + + 
5 6 7S + |F S + |F S Product Rule = |F | · | | | · | | | · | | 

= 52 · 625 + 52 626 + 52 627 · ·
≈ 1.8 · 1014 different passwords 

Subsets of an n­element Set 

How many different subsets of an n element set X are there? For example, the set X = 
x1, x2, x3} has eight different subsets: {

x1} x2} x1, x2}{} { { {
x1, x2, x3}{x3} {x1, x3} {x2, x3} {

There is a natural bijection from subsets of X to n­bit sequences. Let x1, x2, . . . , xn 

be the elements of X . Then a particular subset of X maps to the sequence (b1, . . . , bn) 
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where bi = 1 if and only if xi is in that subset. For example, if n = 10, then the subset 
{x2, x3, x5, x7, x10} maps to a 10­bit sequence as follows: 

subset: x2, x3, x5, x7, x10 

sequence: 
{
( 0, 1, 1, 0, 1, 0, 1, 0, 0, 1 

}
) 

We just used a bijection to transform the original problem into a question about sequences— 
exactly according to plan! Now if we answer the sequence question, then we’ve solved our 
original problem as well. 

But how many different n­bit sequences are there? For example, there are 8 different 
3­bit sequences: 

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) 
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) 

Well, we can write the set of all n­bit sequences as a product of sets:


{0, 1} n
={0, 1} × {0, 1} × . . .× {0, 1}� 
n terms 

Then Product Rule gives the answer: 

=|{0, 1} n | |{0, 1}| n 

= 2n 

This means that the number of subsets of an n­element set X is also 2n. We’ll put this 
answer to use shortly. 

3 More Functions: Injections and Surjections 

Bijective functions are incredibly powerful counting tools. A few other kinds of functions 
are useful as well; we’ll look at two now and one more next time. A function f : X Y→
is: 

• surjective if every element of Y is mapped to at least once 

• injective if every element of Y is mapped to at most once 

• bijective if every element of Y is mapped to exactly once 

We’ve repeated the definition of a bijective function for comparison. Notice that these 
definitions immediately imply that a function is bijective if and only if it is both injective 
and surjective. Now the names “surjective” and “injective” are hopelessly unmemorable 
and nondescriptive. Some people prefer the terms onto and into, respectively, perhaps 
on the grounds that these are hopelessly unmemorable and nondescriptive— but shorter. 
Anyway, here are a couple examples: 
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X Y X Y 

-a 1 a - 1 

3 2 
3 2

� �
b PPPPPP

b PPPPPP
� �

c � q 3 c Q �
� q 3� �3 Q

PPPPPP
� � � 

d � � q d � Q
Q4 4� 

� QQe � s 5 

The function on the left is surjective (every element on the right is mapped to at least 
once), but not injective (element 3 is mapped to twice). The function on the right is injec­
tive (every element is mapped to at most once), but not surjective (element 4 is mapped 
to zero times). 

Earlier, we observed that two sets are the same size if there is a bijection between them. 
Similarly, surjections and injections imply certain size relationships between sets. 

Rule 4 (Mapping Rule). 

1. If f : X → Y is surjective, then |X Y .| ≥ | |

2. If f : X → Y is injective, then |X Y .| ≤ | |

3. If f : X → Y is bijective, then |X = Y .| | |

3.1 The Pigeonhole Principle 

Here is an old puzzle: 

A drawer in a dark room contains red socks, green socks, and blue socks. How 
many socks must you withdraw to be sure that you have a matching pair? 

For example, picking out three socks is not enough; you might end up with one red, one 
green, and one blue. The solution relies on the Pigeonhole Principle, which is a friendly 
name for the contrapositive of part (2) of the Mapping Rule. Let’s write it down: 

If |X > Y , then no function f : X Y is injective. | | | → 

Now let’s rewrite this a second time to eliminate the word “injective” since, by now, 
there’s not a ghost of a chance that you remember what that means: 

Rule 5 (Pigeonhole Principle). If |X > |Y , then for every function f : X Y there exist | |
two different elements of X that are mapped to the same element of Y . 

→ 
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Perhaps the relevance of this abstract mathematical statement to selecting footwear 
under poor lighting conditions is not obvious. However, let A be the set of socks you 
pick out, let B be the set of colors available, and let f map each sock to its color. The 
Pigeonhole Principle says that if |A > B = 3, then at least two elements of A (that is, at | | |
least two socks) must be mapped to the same element of B (that is, the same color). For 
example, one possible mapping of four socks to three colors is shown below. 

A f B 

1st sock	 - red 

- green 2nd sock 
3�

� 
3rd sock �

� - blue 
� 

�4th sock 

Therefore, four socks are enough to ensure a matched pair. 

Not surprisingly, the pigeonhole principle is often described in terms of pigeons: if 
more than n pigeons fly into n pigeonholes, then at least two pigeons must fly into some 
hole. In this case, the pigeons form set A, the pigeonholes are set B, and f describes the 
assignment of pigeons to pigeonholes. 

Mathematicians have come up with many ingenious applications for the pigeonhole 
principle. If there were a cookbook procedure for generating such arguments, we’d give 
it to you. Unfortunately, there isn’t one. One helpful tip, though: when you try to solve a 
problem with the pigeonhole principle, the key is to clearly identify three things: 

1. The set A (the pigeons). 

2. The set B (the pigeonholes). 

3. The function f (the rule for assigning pigeons to pigeonholes). 

Hairs on Heads 

There are a number of generalizations of the pigeonhole principle. For example: 

Rule 6 (Generalized Pigeonhole Principle). If |X > k · Y , then every function f : X Y| | |
maps at least k + 1 different elements of X to the same element of Y .	

→ 

For example, if you pick two people at random, surely they are extremely unlikely to 
have exactly the same number of hairs on their heads. However, in the remarkable city of 
Boston, Massachusetts there are actually three people who have exactly the same number 
of hairs! Of course, there are many bald people in Boston, and they all have zero hairs. 
But I’m talking about non­bald people. 



12 Counting I 

Boston has about 500,000 non­bald peole, and the number of hairs on a person’s head 
is at most 200,000. Let A be the set of non­bald people in Boston, let B = {1, . . . , 200, 000}, 
and let f map a person to the number of hairs on his or her head. Since |A > 2 B , the | | |
Generalized Pigeonhole Principle implies that at least three people have exactly the same 
number of hairs. I don’t know who they are, but I know they exist! 

Subsets with the Same Sum 

We asserted that two different subsets of the ninety 25­digit numbers listed on the first 
page have the same sum. This actually follows from the Pigeonhole Principle. Let A be 
the collection of all subsets of the 90 numbers in the list. Now the sum of any subset of 
numbers is at most 90 1025, since there are only 90 numbers and every 25­digit number is · 
less than 1025. So let B be the set of integers {0, 1, . . . , 90 · 1025}, and let f map each subset 
of numbers (in A) to its sum (in B). 

We proved that an n­element set has 2n different subsets. Therefore: 

A| = 290|
≥ 1.237 × 1027 

On the other hand: 

|B = 90 · 1025 + 1 | 
≤ 0.901 × 1027 

Both quantities are enormous, but |A is a bit greater than B . This means that f maps| | |
at least two elements of A to the same element of B. In other words, by the Pigeonhole 
Principle, two different subsets must have the same sum! 

Notice that this proof gives no indication which two sets of numbers have the same 
sum. This frustrating variety of argument is called a nonconstructive proof . 
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Sets with Distinct Subset Sums 

How can we construct a set of n positive integers such that all its subsets have 
distinct sums? One way is to use powers of two: 

{1, 2, 4, 8, 16} 

This approach is so natural that one suspects all other such sets must involve larger 
numbers. (For example, we could safely replace 16 by 17, but not by 15.) Remarkably, 
there are examples involving smaller numbers. Here is one: 

{6, 9, 11, 12, 13} 

One of the top mathematicans of the century, Paul Erd ̋os, conjectured in 1931 that 
there are no such sets involving significantly smaller numbers. More precisely, he 
conjectured that the largest number must be Ω(2n). He offered $500 to anyone who 
could prove or disprove his conjecture, but the problem remains unsolved. 
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