18.335 Midterm Solutions

Problem 1: Schur, backsubstitution, complexity (20 points)

You are given matrices A (m x m), B (n x n), and C (m x n), and want to solve for an unknown matrix X
(m x n) solving:
AX —-XB=C.

We will do this using the Schur decompositions of A and B. (Recall that any square matrix S can be factorized
in the Schur form S = QU Q* for some unitary matrix Q and some upper-triangular matrix U.)

(a) AX —XB =C = Q,Us03X — XQpUpQj, and hence (multiplying on the left by O} and on the right
by Op), we obtain
UpaQ4X0p — 03X QpUp = 04 COp,

s0 A’ =Uy, B'=Up, C' = QCQp, and X' = 03X Qp. To get X from X', we obtain X = Q4X'Qj.

(b) The last row of A’X’ — X'B’ = C/, since A’ is upper-triangular, is:

A:nm my X/ B Cl (A:nml B/)v
which is only in terms of the last row X' . of X’. To find this last row, then, we merely need to solve the

mm] B’ is upper-triangular, we can do this by backsubstitution
in 0(n2) operations. Or, I guess, technically, this is “forward” substitution because you start with the
first column of B’ and move right, but whatever—it’s the same thing under a permutation. [Although
this is a row-vector problem, we can obviously transpose to get the familiar column-vector problem,
in which case (A}, I —B')T is lower-triangular.]

system of equations above—since A’

(c) More generally, the j-th row of A’X’ — X’B’ = C’ can be written purely in terms of the j-th and later
rows of X', since A’ is upper-triangular:
! !/ /
ALXE + Y ALX] X[B =C},
i>j
and hence
Xj (A1 -B) = ZA;,X[,
i>j
which is again an upper-triangular system of equations. It takes 2(m — j)n operations to construct the
right-hand side, and O(n?) operations to solve by backsubstitution.

(d) We have to solve for m rows. Each of them requires an O(n?) backsubstitution, for O(mn?) operations.
There are also ~ Y} 2(m — j)n = O(m?n) flops to compute the right-hand sides. Finally, to compute
X = QaX'Qj; requires two matrix multiplies, for 2m?n + 2mn® flops. So, the total complexity is
O(m?n) + O(mn?), not including the O(m>) 4 O(n?) time for the Schur factorizations.

Problem 2: Stability (20 points)

Since it is backwards stable (with respect to A and/or b), we obtain an x + dx such that (A + 6A)(x+ 6x) =
b+68b =~ A(x+ 6x)+ 6Ax, where ||SA|| = O(&p5chine) 1Al and ||0b| = O(€qachine)||P|l- That means that
the residual, computed in exact arithmetic, would r = b — A(x+ 8x) = Adx = §Ax — 8b. The norm of this is
< [|54x] + 135 < |5A]|x]| + 135] = [0(emachine)- But [lx]| = 4 ~"6]| < |4~
so we obtain ||7|| < [k(A) 4 1]||b[|O(emachine)- However, I didn’t specify whether the backwards stability
was with respect to A or b; if you only assumed the latter you wouldn’t have gotten the x(A) term.

This is still not quite right, however, if the residual r itself is computed in floating-point arithmetic.
In particular, the computation of b — Ay in floating-point for any y is also backwards stable with respect

to y, so in computing b — A(x + 6x) we obtain b — A(x + dx + 0x") where [|6x']| = ||x[|O(&pachine) <
A=) 116]|O(€machine)- Hence, this gives us an additional term A8x’ in the residual, which has magnitude
< [|A[|118x']| < x(A)[|b]|O(&machine)-

Adding these two sources of error, we obtain a residual whose magnitude proportional to k(A)||5||O(€qachine)-

Problem 3: Conjugate gradient (20 points)
(a) CG does not change the component of x,, in the nullspace (the span of the zero-A eigenvectors).

Proof: If we expand x; = }; yi(j)qi in the eigenvectors ¢; with some coefficients yi(j), we see im-

mediately that Ax; = Y~ 7L,~yi(")q,- is in the span of the nonzero-A eigenvectors of A; equivalently, it is
perpendicular to the nullspace. Hence, the residual »; = b — Ax; (which we compute by recurrence in
the CG algorithm) is also perpendicular to the nullspace. Since all the residuals are perpendicular to
the nullspace, and since the directions d; are linear combinations of the residuals (via Gram-Schmidt),
the directions d; are also perpendicular to the nullspace. Hence, when we compute x;, = x,—1 + 0t;dy—1,

we do not change the components of x in the nullspace, and y,-(”) =)/;"71) fori <k.

(b) Because CG only changes x, in directions perpendicular to the nullspace, it is equivalent to doing CG
on the nonsingular problem of Ax = b acting within the column space of A. Since xo = 0, it initially
has no (nonzero) component in the nullspace and hence x,, has no component in the nullspace. Hence,
if b =Y ;-1 Biq; for some coefficients f3;, it converges to x, — Y- %qi. The rate of convergence is
determined by the square root of the condition number of A within this subspace, i.e. at worst the
convergence requires O(/ A,/ Ax41) iterations, assuming we have sorted the A;’s in increasing order.
(Not including possible superlinear convergence depending on the eigenvalue distribution.)

(c) If we choose the initial guess xo # 0, it will still converge, but it may just converge to a different
solution—the component of xj in the nullspace has no effect on CG at all, and the component in the
column space is just a different starting guess for the nonsingular CG in the subspace. That is, since
the component) ;< %iq; of xo in the nullspace is not changed by CG, we will get (in the notation

above) X, — Y.<k Yiqi + Lisk %q,u

(d) Just set b = 0 and pick xg to be a random vector, and from above it will converge to a vector in the

nullspace in O(\/ A,/ Ax1) iterations at worst.

Problem 4: Rayleigh quotients (20 points)

0
Rayleigh quotient is r(x) = A by inspection, and since this is an upper bound for the smallest eigenvalue of
A, we are done.

Let the smallest-A eigensolution of B be BA; = A1q; where ¢jq; = 1. Letx = (a1), in which case the

Problem 5: Norms and SVDs (20 points)

1

If B were just a real number b, this would be a 2 x 2 matrix A = (b

11)), which has eigenvalues 1+ b

for eigenvectors . We would immediately obtained the desired result since ||B|| = |b| and ||A]|> is

+1
the ratio of the maximum to the minimum eigenvalue. Now, we just want to use a similar strategy for the
general case where B is m x n, where from the SVD we can write:

A I B\ _ I Uxv*
“\ B 1)\ viiy* 1 :

That is, we expect to get &= combinations of eigenvectors of B.
For simplicity, let’s start with the case where B is square m X m, in which case £ = T (diagonal) and U

and V are all m x m. In this case, consider the vectors corresponding to the columns of X = (:E]V) .In

I Uzv* U U+UL
AXe = (VEU* T) < +V) _< VELV)‘Xi(liz)’

Since the matrix at right is diagonal, this means that the columns of X are eigenvectors of A, with eigen-
values 1 £ o; where o; are the singular values of B (possibly including some zeros from the diagonal of
¥ if B is not full rank). These are, moreover, all of the 2m eigenvalues of A. Since A is Hermitian,
eigenvalues are the same thing as the singular values, and hence the maximum singular value of A is
1 +max o; and the minimum is 1 —max o; (since we are given that ||B||2 < 1 and hence o; < 1), and hence
k(A) = (1+maxo;)/(1 —maxo;) = (1+|B|]2)/(1—B]2).- QE.D.

What about the case where B is not square? Suppose m > n, in which case U is bigger than V so it
doesn’t make sense to write X as above. However, there is a simple fix. In the definition of X, just pad V
with m — n columns of zeros to make an n x m matrix Vp. Then V*V} is the n x n identity matrix plus m —n
columns of zeros. Then we get

B I Uzv* U _ [UxU \ _
AXe = (velus 1) (Vo)‘ (VET £V,)‘Xi(lizﬁ)’

where X is X padded with m —n columns of zeros to make a diagonal m x m matrix, noting that VX! =
Vozg = VoXo. The result follows as above. If m < n, the analysis is similar except that we pad U with n —m
columns of zeros.

this case,

Problem 6: Least-squares problems (20 points)

We want to minimize (Ax — b)*W (Ax — b). The best thing to do is to turn this into a regular least-squares
problem by breaking W in “halves” and putting half on the left and half on the right. For example, we can
compute the Cholesky factorization W = R*R, and then we are minimizing (RAx — Rb)*(RAx — Rb), which
is equivalent to solving the least-squares problem for RA and Rb. This we could do, e.g., by computing the
QR factorization RA = Q'R’, and then solve R'x = Q"*Rb by backsubstitution. None of these steps has any
particular accuracy problems.

Of course, there are plenty of other ways to do it. You could also compute W by diagonalizing
W = QAQ* and then using /W = Q+/AQ*. This might be a bit more obvious if you have forgotten about
Cholesky. Again solving the least-squares problem with /WA and /Wb, this works, but is a bit less efficient
because eigenproblems take many more operations than Cholesky factorization.

We could also write down the normal equations A*WAx = A*Wb, derived from the gradient of (Ax —
b)*W (Ax — b) with respect to x. However, solving these directly sacrifices some accuracy because (as usual)
it squares the condition number of A.

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

