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1 Introduction 

In this document we develop models useful for calculating the dynamic behavior of synchronous 
machines. We start with a commonly accepted picture of the synchronous machine, assuming that 
the rotor can be fairly represented by three equivalent windings: one being the field and the other 
two, the d- and q- axis “damper” windings, representing the effects of rotor body, wedge chain, 
amortisseur and other current carrying paths. 

While a synchronous machine is assumed here, the results are fairly directly applicable to 
induction machines. Also, extension to situations in which the rotor representation must have 
more than one extra equivalent winding per axis should be straightforward. 

2 Phase Variable Model 

To begin, assume that the synchronous machine can be properly represented by six equivalent 
windings. Four of these, the three armature phase windings and the field winding, really are 
windings. The other two, representing the effects of distributed currents on the rotor, are referred 
to as the “damper” windings. Fluxes are, in terms of currents: 

L M Iph λph = ph 

λR M T L IR 
(1) 

R 

where phase and rotor fluxes (and, similarly, currents) are: 

  
λa 

 

λph = 
 λb  (2) 
λc 

  
λf 

 

λR = 
 λkd  (3) 
λkq 

There are three inductance sub- matrices. The first of these describes armature winding induc­
tances: 

  
La Lab Lac 

 

L = 
 Lab Lb Lbc  (4) 

ph 

Lac Lbc Lc 

1




3 

where, for a machine that may have some saliency: 

La = La0 + L2 cos 2θ (5) 

2π 
Lb = La0 + L2 cos 2(θ − ) (6) 

3 
2π 

Lc = La0 + L2 cos 2(θ + ) (7) 
3 
π 

Lab = Lab0 + L2 cos 2(θ − ) (8) 
3

Lbc = Lab0 + L2 cos 2θ (9) 
π 

Lac = Lab0 + L2 cos 2(θ + ) (10) 
3

Note that, in this last set of expressions, we have assumed a particular form for the mutual in­
ductances. This is seemingly restrictive, because it constrains the form of phase- to- phase mutual 
inductance variations with rotor position. The coefficient L2 is actually the same in all six of these 
last expressions. As it turns out, this assumption does not really restrict the accuracy of the model 
very much. We will have more to say about this a bit later. 

The rotor inductances are relatively simply stated: 
  
Lf Lfkd 0 

 

L = 
 Lfkd Lkd 0 

 (11) 
R 

0 0 Lkq 

And the stator- to- rotor mutual inductances are: 
  
M cos θ Lakd cos θ −Lakq sin θ 

M = 
 
 M cos(θ − 2π 

3 
) Lakd cos(θ − 2π 

3 
) −Lakq sin(θ − 2π 

3 
) 
 
 (12) 

M cos(θ + 2π 
3 

) Lakd cos(θ + 2π 
3 

) −Lakq sin(θ + 2π 
3 

) 

Park’s Equations 

The first step in the development of a suitable model is to transform the armature winding variables 
to a coordinate system in which the rotor is stationary. We identify equivalent armature windings 
in the direct and quadrature axes. The direct axis armature winding is the equivalent of one of 
the phase windings, but aligned directly with the field. The quadrature winding is situated so 
that its axis leads the field winding by 90 electrical degrees. The transformation used to map 
the armature currents, fluxes and so forth onto the direct and quadrature axes is the celebrated 
Park’s Transformation, named after Robert H. Park, an early investigator into transient behavior 
in synchronous machines. The mapping takes the form: 

    
ud ua 

    
 uq  = udq = Tuph = T 

 ub  (13) 
u0 uc 

Where the transformation and its inverse are: 
  

cos θ cos(θ − 2
3 

π ) cos(θ + 2
3 

π )
2 
 2π 

T = 
 − sin θ − sin(θ − 

3 
) − sin(θ + 2

3 

π ) 
 (14) 

3 1 1 1 

2 2 2 
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  
cos θ − sin θ 1 

 2π 2π 

T −1 = 
 cos(θ − 

3 
) − sin(θ − 

3 
) 1 

 (15) 
2πcos(θ + 2

3 

π ) − sin(θ + 
3 

) 1 

This transformation maps balanced sets of phase currents into constant currents in the d-q frame. 
That is, if rotor angle is θ = ωt + θ0, and phase currents are: 

Ia = I cos ωt 
2π 

Ib = I cos(ωt − )
3 
2π 

Ic = I cos(ωt + )
3 

Then the transformed set of currents is: 

Id = I cos θ0 

Iq = −I sin θ0 

Now, we apply this transformation to (1) to express fluxes and currents in the armature in the d-q 
reference frame. To do this, extract the top line in (1): 

λph = L 
ph 
Iph + MIR (16) 

The transformed flux is obtained by premultiplying this whole expression by the transformation 
matrix. Phase current may be obtained from d-q current by multiplying by the inverse of the 
transformation matrix. Thus: 

λdq = TL 
ph 
T −1Idq + TMIR (17) 

The same process carried out for the lower line of (1) yields: 

λR = MT T −1Idq + L 
R 
IR (18) 

Thus the fully transformed version of (1) is: 

L LCλdq = dq Idq (19) 
3 LT L IRλR 2 C R 

If the conditions of (5) through (10) are satisfied, the inductance submatrices of (19) wind up being 
of particularly simple form. (Please note that a substantial amount of algebra has been left out 
here!) 

  
Ld 0 0 

 

L = 
 0 Lq 0 

 (20) 
dq 

0 0 L0 

  
M Lakd 0 

 

L = 
 0 0 Lakq  (21) 

C 
0 0 0 

3 



Note that (19) through (21) express three separate sets of apparently independent flux/current 
relationships. These may be re-cast into the following form: 

      
λd Ld Lakd M Id 

 
 λkd 

 
 = 

 
 3 

2 
Lakd Lkd Lfkd 

 
 
 
 Ikd 

 
 (22) 

λf 
3 

2 
M Lfkd Lf If 

[ ] [ ] [ ] 
λq 

λkq 
= 

Lq 
3 

2 
Lakq 

Lakq 

Lkq 

Iq 
Ikq 

(23) 

λ0 = L0I0 (24) 

Where the component inductances are: 

3 
Ld = La0 − Lab0 + L2 (25) 

2 
3 

Lq = La0 − Lab0 − L2 (26) 
2 

L0 = La0 + 2Lab0 (27) 

Note that the apparently restrictive assumptions embedded in (5) through (10) have resulted in 
the very simple form of (21) through (24). In particular, we have three mutually independent sets 
of fluxes and currents. While we may be concerned about the restrictiveness of these expressions, 
note that the orthogonality between the d- and q- axes is not unreasonable. In fact, because these 
axes are orthogonal in space, it seems reasonable that they should not have mutual flux linkages. 
The principal consequence of these assumptions is the de-coupling of the zero-sequence component 
of flux from the d- and q- axis components. We are not in a position at this time to determine 
the reasonableness of this. However, it should be noted that departures from this form (that is, 
coupling between the “direct” and “zero” axes) must be through higher harmonic fields that will 
not couple well to the armature, so that any such coupling will be weak. 

Next, armature voltage is, ignoring resistance, given by: 

d d 
V ph = 

dt
λph = T −1λdq (28) 

dt 
and that the transformed armature voltage must be: 

V dq = TV ph 

d 
= T (T −1λdq)dt 

d d 
= λdq + (T T −1)λdq (29) 

dt dt 

A good deal of manupulation goes into reducing the second term of this, resulting in: 

  
0 −dθ 0

dt d 
 dθ 

T T −1 = 
 dt 

0 0  (30) 
dt 

0 0 0 

4 



4 

5 

This expresses the speed voltage that arises from a coordinate transformation. The two voltage/flux 
relationships that are affected are: 

dλd
Vd = − ωλq (31) 

dt 
dλq

Vq = + ωλd (32) 
dt 

where we have used 
dθ 

ω = (33) 
dt 

Power and Torque 

Instantaneous power is given by: 
P = VaIa + VbIb + VcIc (34) 

Using the transformations given above, this can be shown to be: 

3 3 
P = 

2 
VdId + 

2 
VqIq + 3V0I0 (35) 

which, in turn, is: 

P = ω 
3 

2
(λdIq − λqId) + 

3 

2
( 
dλd 

dt 
Id + 

dλq 

dt 
Iq) + 3 

dλ0 

dt 
I0 (36) 

Then, noting that electrical speed ω and shaft speed Ω are related by ω = pΩ and that (36) 
describes electrical terminal power as the sum of shaft power and rate of change of stored energy, 
we may deduce that torque is given by: 

3 
T = p(λdIq − λqId) (37) 

2

Per-Unit Normalization 

The next thing for us to do is to investigate the way in which electric machine system are nor­

malized, or put into what is called a per-unit system. The reason for this step is that, when the 
voltage, current, power and impedance are referred to normal operating parameters, the behavior 
characteristics of all types of machines become quite similar, giving us a better way of relating 
how a particular machine works to some reasonable standard. There are also numerical reasons for 
normalizing performance parameters to some standard. 

The first step in normalization is to establish a set of base quantities. We will be normalizing 
voltage, current, flux, power, impedance and torque, so we will need base quantities for each of 
these. Note, however, that the base quantities are not independent. In fact, for the armature, we 
need only specify three quantities: voltage (VB), current (IB) and frequency (ω0). Note that we do 
not normalize time nor frequency. Having done this for the armature circuits, we can derive each 
of the other base quantities: 

5 



•	 Base Power 
3 

PB = VBIB
2 

•	 Base Impedance 
VB

ZB = 
IB 

•	 Base Flux 
VB

λB = 
ω0 

•	 Base Torque 
p

TB = PB
ω0 

Note that, for our purposes, base voltage and current are expressed as peak quantities. Base voltage 
is taken on a phase basis (line to neutral for a “wye” connected machine), and base current is 
similarly taken on a phase basis, (line current for a “wye” connected machine). 

Normalized, or per-unit quantities are derived by dividing the ordinary variable (with units) by 
the corresponding base. For example, per-unit flux is: 

λ ω0λ 
ψ = = (38) 

λB VB 

In this derivation, per- unit quantities will usually be designated by lower case letters. Two 
notable exceptions are flux, where we use the letter ψ, and torque, where we will still use the upper 
case T and risk confusion. 

Now, we note that there will be base quantities for voltage, current and frequency for each of 
the different coils represented in our model. While it is reasonable to expect that the frequency 

base will be the same for all coils in a problem, the voltage and current bases may be different. We 
might write (22) as: 

	  
  ω0IdB Ld

ω0IkB Lakd 
ω0If B M 



 
id 

 
Vdb Vdb Vdbψd  

   ω0IdB 3	 ω0If B   
	 ψkd  =  

2 
Lakd 

ω0IkB Lkd Lfkd  ikd  (39) Vkb Vkb Vkdb 
	  

ψf ω0IdB 3 M ω0IkB	 ifLfkd 
ω0If B LfVf b 2 Vf b Vf b 

where i = I/IB denotes per-unit, or normalized current. 
Note that (39) may be written in simple form: 

  	   
ψd xd xakd xad id 

  	   
	 ψkd  = 

 xakd xkd xfkd  ikd  (40) 
ψf xad xfkd xf if 

It is important to note that (40) assumes reciprocity in the normalized system. To wit, the following 
expressions are implied: 

IdB 
xd = ω0 Ld (41) 

VdB 
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IkB 
xkd = ω0 Lkd (42) 

VkB 

IfB 
xf = ω0 Lf (43) 

VfB 

IkB 
xakd = ω0 Lakd 

VdB 

3 IdB 
= ω0 Lakd (44) 

2 VkB 

IfB 
xad = ω0 M 

VdB 

3 IdB 
= ω0 M (45) 

2 VfB 

IkB 
xfkd = ω0 Lfkd 

Vfb 

IfB 
= ω0 Lfkd (46) 

Vkb 

These in turn imply: 

3 
VdBIdB = VfBIfB (47) 

2 
3 
VdBIdB = VkBIkB (48) 

2 
VfBIfB = VkBIkB (49) 

These expressions imply the same power base on all of the windings of the machine. This is 
so because the armature base quantities Vdb and Idb are stated as peak values, while the rotor base 
quantities are stated as DC values. Thus power base for the three- phase armature is 3 times 

2 

the product of peak quantities, while the power base for the rotor is simply the product of those 
quantities. 

The quadrature axis, which may have fewer equivalent elements than the direct axis and which 
may have different numerical values, still yields a similar structure. Without going through the 
details, we can see that the per-unit flux/current relationship for the q- axis is: 

ψq = 
xq xakq iq (50) 

ψkq xakq xkq ikq 

The voltage equations, including speed voltage terms, (31) and (32), may be augmented to 
reflect armature resistance: 

dλd
Vd = − ωλq + RaId (51) 

dt 
dλq

Vq = ωλd + + RaIq (52) 
dt 

The per-unit equivalents of these are: 

1 dψd ω 
vd = − ψq + raid (53) 

ω0 dt ω0 
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ω 1 dψq
vq	 = ψd + + raiq (54) 

ω0 ω0 dt 

RaWhere the per-unit armature resistance is just ra = 
ZB 

Note that none of the other circuits in this model have speed voltage terms, so their voltage 
expressions are exactly what we might expect: 

vf = 
1 

ω0 

dψf 

dt 
+ rf if (55) 

vkd = 
1 

ω0 

dψkd 

dt 
+ rkdikd (56) 

vkq = 
1 

ω0 

dψkq 

dt 
+ rkqikq (57) 

v0 = 
1 

ω0 

dψ0 

dt 
+ rai0 (58) 

It should be noted that the damper winding circuits represent closed conducting paths on the rotor, 
so the two voltages vkd and vkq are always zero. 

Per-unit torque is simply: 
Te = ψdiq − ψqid (59) 

Often, we need to represent the dynamic behavior of the machine, including electromechanical 
dynamics involving rotor inertia. If we note J as the rotational inertia constant of the machine 
system, the rotor dynamics are described by the two ordinary differential equations: 

1	 dω 
J = T e + T m	 (60) 
p	 dt 

dδ 
=	 ω − ω0 (61) 

dt 

where T e and T m represent electrical and mechanical torques in “ordinary” variables. The angle δ 
represents rotor phase angle with respect to some synchronous reference. 

It is customary to define an “inertia constant” which is not dimensionless but which nevertheless 
fits into the per-unit system of analysis. This is: 

Rotational kinetic energy at rated speed 
H ≡	 (62) 

Base Power 

Or: 
( )2 

1 

2 
J ω

p 
0 

J ω0
H = =	 (63) 

PB 2pTB 

Then the per-unit equivalent to (60) is: 

2H dω 
= Te + Tm	 (64) 

ω0 dt 

where now we use Te and Tm to represent per-unit torques. 

8 



6 

7 

Equal Mutual’s Base 

In normalizing the differential equations that make up our model, we have used a number of base 
quantities. For example, in deriving (40), the per-unit flux- current relationship for the direct 
axis, we used six base quantities: VB , IB, VfB , IfB , VkB and IkB. Imposing reciprocity on (40) 
results in two constraints on these six variables, expressed in (47) through (49). Presumably the 
two armature base quantities will be fixed by machine rating. That leaves two more “degrees of 
freedom” in selection of base quantities. Note that the selection of base quantities will affect the 
reactance matrix in (40). 

While there are different schools of thought on just how to handle these degrees of freedom, a 
commonly used convention is to employ what is called the equal mutuals base system. The two 
degrees of freedom are used to set the field and damper base impedances so that all three mutual 
inductances of (40) are equal: 

xakd = xfkd = xad (65) 

The direct- axis flux- current relationship becomes: 

      
ψd xd xad xad id 

 
 ψkd 

 
 = 

 
 xad xkd xad 

 
 
 
 ikd 

 
 (66) 

ψf xad xad xf if 

Equivalent Circuit 

id if 
� ra xal xfl rf � 

∧ ∧ ∧ ∩∩∩∩ ∩∩∩∩ ∧ ∧ ∧ 
∨ ∨ ∨ ∨ 

+ + 

(ω0vd + ωψq) ψd 

⊃
⊃
⊃
⊃


⊃
⊃
⊃
⊃

xkdl 

+ 

vfxad 

< 
> 

< rkd - - > ­
< 

Figure 1: D- Axis Equivalent Circuit 

The flux- current relationship of (66) is represented by the equivalent circuit of Figure 1, if the 
“leakage” inductances are defined to be: 

xal = xd − xad (67) 

xkdl = xkd − xad (68) 

xfl = xf − xad (69) 
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Many of the interesting features of the electrical dynamics of the synchronous machine may be 
discerned from this circuit. While a complete explication of this thing is beyond the scope of this 
note, it is possible to make a few observations. 

The apparent inductance measured from the terminals of this equivalent circuit (ignoring resis­
tance ra) will, in the frequency domain, be of the form: 

ψd(s) Pn(s) 
x(s) = = xd (70) 

id(s) Pd(s) 

Both the numerator and denominator polynomials in s will be second order. (You may convince 
yourself of this by writing an expression for terminal impedance). Since this is a “diffusion” type 
circuit, having only resistances and inductances, all poles and zeros must be on the negative real 
axis of the “s-plane”. The per-unit inductance is, then: 

′ ′′ (1 + T s)(1 + T s)dx(s) = xd
d
′ ′′ 

(71) 
(1 + T s)(1 + T s)do do 

′ ′′ The two time constants Td and Td are the reciprocals of the zeros of the impedance, which are 
the poles of the admittance. These are called the short circuit time constants. 

′ ′′ The other two time constants Tdo and Tdo are the reciprocals of the poles of the impedance, and 
so are called the open circuit time constants. 

We have cast this thing as if there are two sets of well- defined time constants. These are the 
′ ′ ′′ ′′ transient time constants Td and Tdo, and the subtransient time constants T and Tdo . In many d 

cases, these are indeed well separated, meaning that: 

′ ′′ Td ≫ Td (72) 
′ ′′ ≫ Tdo (73) Tdo 

If this is true, then the reactance is described by the pole-zero diagram shown in Figure 2. 
Under this circumstance, the apparent terminal inductance has three distinct values, depending on 
frequency. These are the synchronous inductance, the transient inductance, and the subtransient 

inductance, given by: 

′ 

′ 
Tdxd = xd ′ 

(74) 
Tdo 

′′ 

′′ ′ 
Tdxd = xd ′′ Tdo 

′ ′′ Td Td= xd ′ ′′ 
(75) 

T Tdo do 

A Bode Plot of the terminal reactance is shown in Figure 3.

If the time constants are spread widely apart, they are given, approximately, by:


′ 
xf 

= (76) Tdo ω0rf 

′′ 
xkdl + xfl||xad 

= (77) Tdo ω0rkd 
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8 

1 1 
′


Tdo ” do� × � T 

× 
1 1 

′
Td ” T
d 

Figure 2: Pole-Zero Diagram For Terminal Inductance 

log |x(jω)| 

1 1 1 1 log ω 
′ ′
T T Tdo ” Td ” 
do d 

Figure 3: Frequency Response of Terminal Inductance 

Finally, note that the three reactances are found simply from the model: 

xd = xal + xad	 (78) 
′ xd = xal + xad||xfl	 (79) 
′′ xd = xal + xad||xfl||xkdl	 (80) 

Statement of Simulation Model 

Now we can write down the simulation model. Actually, we will derive more than one of these, since 
the machine can be driven by either voltages or currents. Further, the expressions for permanent 
magnet machines are a bit different. So the first model is one in which the terminals are all 
constrained by voltage. 

The state variables are the two stator fluxes ψd, ψq, two “damper” fluxes ψkd, ψkq, field flux ψf , 
and rotor speed ω and torque angle δ. The most straightforward way of stating the model employs 
currents as auxiliary variables, and these are: 

  	 

−1   
id xd xad xad ψd 

  	    
	 ikd  = 

 xad xkd xad   ψkd  (81) 
if xad xad xf ψf 

[ ] [ ]

−1 [ ] 
xq xaq ψq	 (82) 

iq = 
ikq xaq xkq ψkq 

11 



Then the state equations are: 

dψd 

dt 
= ω0vd + ωψq − ω0raid (83) 

dψq 

dt 
= ω0vq − ωψd − ω0raiq (84) 

dψkd 

dt 
= −ω0rkdikd (85) 

dψkq 

dt 
= −ω0rkqikq (86) 

dψf 

dt 
= ω0vf − ω0rf if (87) 

dω 
dt 

= 
ω0 

2H 
(Te + Tm) (88) 

dδ 
dt 

= ω − ω0 (89) 

and, of course, 
Te = ψdiq − ψqid 

8.1 Statement of Parameters: 

′ ′′ ′ Note that often data for a machine may be given in terms of the reactances xd, xd, xd, T and do 
′′ Tdo, rather than the elements of the equivalent circuit model. Note that there are four inductances 

in the equivalent circuit so we have to assume one. There is no loss in generality in doing so. 
Usually one assumes a value for the stator leakage inductance, and if this is done the translation is 
straightforward: 

xad = xd − xal 
′ xad(xd − xal) 

xfl = 
′ xad − xd + xal 

1 
xkdl = 

1 − 1 − 1 
′′
x −xal xad xf l d 

xfl + xad 
rf = 

′ω0Tdo 

xkdl + xad||xfl 
rkd = 

′′ ω0Tdo 

8.2 Linearized Model 

Often it becomes desirable to carry out a linearized analysis of machine operation to, for example, 
examine the damping of the swing mode at a particular operating point. What is done, then, 
is to assume a steady state operating point and examine the dynamics for deviations from that 
operating point that are “small”. The definition of “small” is really “small enough” that everything 
important appears in the first-order term of a Taylor series about the steady operating point. 

Note that the expressions in the machine model are, for the most part, linear. There are, 
however, a few cases in which products of state variables cause us to do the expansion of the 
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Taylor series. Assuming a steady state operating point [ψd0 ψkd0 ψf0 ψq0 ψkq0 ω0 δ0], the first-
order (small-signal) variations are described by the following set of equations. First, since the 
flux-current relationship is linear: 

   

−1   
id1 xd xad xad ψd1 

      
 ikd1  = 

 xad xkd xad   ψkd1  (90) 
if1 xad xad xf ψf1 

[ ] [ ]

−1 [ ] 
xq xaq ψq1 (91) 

iq1 =

ikq1 xaq xkq ψkq1


Terminal voltage will be, for operation against a voltage source: 

Vd = V sin δ Vq = V cos δ 

Then the differential equations governing the first-order variations are: 

dψd1 
= ω0V cos δ0δ1 + ω0ψq1 + ω1ψq0 − ω0raid1 (92) 

dt

dψq1


= −ω0V sin δ0δ1 − ω0ψd1 − ω1ψd0 − ω0raiq1 (93) 
dt


dψkd1

= −ω0rkdikd1 (94) 

dt

dψkq1


= −ω0rkqikq1 (95) 
dt

dψf1


= −ω0rf if1 (96) 
dt 
dω1 ω0 

= (Te1 + Tm1) (97) 
dt 2H


dδ1

= ω1 (98) 

dt 

Te = ψd0iq1 + ψd1iq0 − ψq0id1 − ψq1id0 

8.3 Reduced Order Model for Electromechanical Transients 

In many situations the two armature variables contribute little to the dynamic response of the 
machine. Typically the armature resistance is small enough that there is very little voltage drop 
across it and transients in the difference between armature flux and the flux that would exist in 
the “steady state” decay rapidly (or are not even excited). Further, the relatively short armature 
time constant makes for very short time steps. For this reason it is often convenient, particularly 
when studying the relatively slow electromechanical transients, to omit the first two differential 
equations and set: 

ψd = vq = V cos δ (99) 

ψq = −vd = −V sin δ (100) 

The set of differential equations changes only a little when this approximation is made. Note, 
however, that it can be simulated with far fewer “cycles” if the armature time constant is short. 
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9 Current Driven Model: Connection to a System 

The simulation expressions developed so far are useful in a variety of circumstances. They are, 
however, difficult to tie to network simulation programs because they use terminal voltage as an 
input. Generally, it is more convenient to use current as the input to the machine simulation and 
accept voltage as the output. Further, it is difficult to handle unbalanced situations with this set 
of equations. 

An alternative to this set would be to employ the phase currents as state variables. Effectively, 
this replaces ψd, ψq and ψ0 with ia, ib, and ic. The resulting model will, as we will show, interface 
nicely with network simulations. 

To start, note that we could write an expression for terminal flux, on the d- axis: 

′′ 
xad||xkdl xad||xfl 

ψd = xdid + ψf + ψkd (101) 
xad||xkdl + xfl xad||xfl + xkdl 

and here, of course, 
′′ xd = xal + xad||xkdl||xfl 

This leads us to define a “flux behind subtransient reactance”: 

′′ 
xadxkdlψf + xadxflψkd 

ψd = (102) 
xadxkdl + xadxfl + xkdlxfl 

So that 
′′ ′′ ψd = ψd + xdid 

On the quadrature axis the situation is essentially the same, but one step easier if there is only 
one quadrature axis rotor winding: 

′′ ψq = xq iq + ψkq 

xaq 
(103) 

xaq + xkql 

where 
′′ x = xal + xaq||xkql q 

′′ ′′ Very often these fluxes are referred to as “voltage behind subtransient reactance, with ψ = eqd 
′′ ′′ and ψq = −ed. Then: 

′′ ′′ ψd = xdid + eq (104) 
′′ ′′ ψq = xq iq − ed (105) 

Now, if id and iq are determined, it is a bit easier to find the other currents required in the 
simulation. Note we can write: 

[ ] [ ] [ ] [ ] 
ψkd 

ψf 
= 

xkd 

xad 

xad 

xf 

ikd 

if 
+ 

xad 

xad 
id (106) 

and this inverts easily: 

[ ] [ ]

−1 ([ ] [ ] ) 
ikd xkd xad ψkd xad = − id (107) 
if xad xf ψf xad 
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{	 } 

{	 } 

The quadrature axis rotor current is simply: 

ikq =
1 
ψkq − 

xaq 
iq (108) 

xkq xkq 

The torque equation is the same, but since it is usually convenient to assemble the fluxes behind 
subtransient reactance, it is possible to use: 

′′ ′′ ′′ ′′ Te = eq iq + edid + (xd − xq)idiq	 (109) 

Now it is necessary to consider terminal voltage. This is most conveniently cast in matrix 
notation. The vector of phase voltages is: 

  
va 

  
vph = 

	 vb  (110) 
vc 

Then, with similar notation for phase flux, terminal voltage is, ignoring armature resistance: 

1 dψ 
ph 

=vph ω0 dt 
1 d 

=	 T −1ψ (111) 
dq ω0 dt 

Note that we may define the transformed vector of fluxes to be: 

′′ ′′ ψ 
dq 

= x idq + e (112) 

where the matrix of reactances shows orthogonality: 

 
′′ 

 
x 0 0d 

x ′′ = 
 
 0 x ′′ q 0 

 
 (113) 

0 0 x0 

and the vector of internal fluxes is: 

  
′′ eq 

′′ 	 ′′  
e = 

 −e	d  (114) 

0 

Now, of course, idq = Tiph, so that we may re-cast (111) as: 

1 d 
′′ ′′ vph = T −1 x Tiph + T −1 e	 (115) 

ω0 dt 

Now it is necessary to make one assumption and one definition. The assumption, which is 
only moderately restrictive, is that subtransient saliency may be ignored. That is, we assume 

′′ ′′ that xd = xq . The definition separates the “zero sequence” impedance into phase and neutral 
components: 

15 



{ } 

′′ x0 = xd + 3xg (116) 

Note that according to this definition the reactance xg accounts for any impedance in the neutral 
of the synchronous machine as well as mutual coupling between phases. 

Then, the impedance matrix becomes: 

    
′′ x 0 0 0 0 0d 

′′    ′′  
x = 

 0 xd 0 
 + 

 0 0 0 
 (117) 

′′ 0 0 xd 0 0 3xg 

In compact notation, this is: 

′′ ′′ x = xdI + x (118) 
g 

where I is the identity matrix. 
Now the vector of phase voltages is: 

1 d 
′′ ′′ vph = xdiph + T −1 x T iph + T −1 e (119) 

gω0 dt 

Note that in (119), we have already factored out the multiplication by the identity matrix. The 
next step is to carry out the matrix multiplication in the third term of (119). This operation turns 
out to produce a remarkably simple result: 

  
1 1 1 

 

T −1 x T = xg  1 1 1 
 (120) 

g 

1 1 1 

The impact of this is that each of the three phase voltages has the same term, and that is 
related to the time derivative of the sum of the three currents, multiplied by xg. 

The third and final term in (119) describes voltages induced by rotor fluxes. It can be written 
as: 

1 d { 
′′ 

} 1 d { } 1 de ′′ 
′′ T −1 T −1 e = e + T −1 (121) 

ω0 dt ω0 dt ω0 dt 
Now, the time derivative of the inverse transform is: 

  
− sin(θ) − cos(θ) 0

1 d ω 
 2π 

T −1 = 
 − sin(θ − 2

3 

π ) − cos(θ − 
3 

) 0 
 (122) 

2πω0 dt ω0 − sin(θ + 2
3 

π ) − cos(θ + 
3 

) 0 

Now the three phase voltages can be extracted from all of this matrix algebra: 

′′ x dia xg dd ′′ va = + (ia + ib + ic) + e (123) 
ω0 dt ω0 dt 

a 

′′ x dib xg dd ′′ vb = + (ia + ib + ic) + e (124) 
ω0 dt ω0 dt 

b 

′′ x dic xg dd ′′ vc = + (ia + ib + ic) + e (125) 
ω0 dt ω0 dt 

c 
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Where the internal voltages are:


′′ 
ω 

′′ ′′ e = − (eq sin(θ) − ed cos(θ)) a ω0 

′′ ′′ 1 
+ cos(θ) 

de q 
+ 

1 
sin(θ) 

de d (126) 
ω0 dt ω0 dt 

2π 
′′ 

2π
′′ 

ω 
′′ eb = − (eq sin(θ − ) − ed cos(θ − )) 

ω0 3 3 
′′ ′′ 1 

+ cos(θ − 
2π 

) 
de q 

+ 
1 

sin(θ − 
2π 

) 
de d (127) 

ω0 3 dt ω0 3 dt 
2π 

′′ 
2π

′′ 
ω 

′′ e = − (eq sin(θ + ) − ed cos(θ + )) c ω0 3 3 
′′ ′′ 1 

+ cos(θ +
2π 

) 
de q 

+ 
1 

sin(θ +
2π 

) 
de d (128) 

ω0 3 dt ω0 3 dt 

This set of expressions describes the equivalent circuit shown in Figure 4. 

′′ 
′′ eaia xd �� 

va ∩∩∩∩ + − 

′′ 
′′ ebib xd �� xg 

vb ∩∩∩∩ + − ∩∩∩∩ 

′′ 
′′ ecic xd �� 

vc ∩∩∩∩ + − 

Figure 4: Equivalent Network Model 

10 Restatement Of The Model 

The synchronous machine model which uses the three phase currents as state variables may now 
be stated in the form of a set of differential and algebraic equations: 

dψkd 
= −ω0rkdikd (129) 

dt 
dψkq 

= −ω0rkqikq (130) 
dt 
dψf 

= −ω0rf if (131) 
dt 
dδ 

= ω − ω0 (132) 
dt 
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( ) dω ω0 ′′ ′′ = Tm + eq iq + edid (133) 
dt 2H 

where: 
[ ] [ ]

−1 ([ ] [ ] ) 
ikd xkd xad ψkd xad = − idif xad xf ψf xad 

and 

ikq =
1 
ψkq − 

xaq 
iq

xkq xkq 

(It is assumed here that the difference between subtransient reactances is small enough to be 
neglected.) 

The network interface equations are, from the network to the machine: 

2π 2π 
id = ia cos(θ) + ib cos(θ − ) + ic cos(θ + ) (134) 

3 3 
2π 2π 

iq = −ia sin(θ) − ib sin(θ − ) − ic sin(θ + ) (135) 
3 3 

and, in the reverse direction, from the machine to the network: 

′′ 
ω 

′′ ′′ e = − (eq sin(θ) − ed cos(θ)) a ω0 

′′ ′′ 1 
+ cos(θ) 

de q 
+ 

1 
sin(θ) 

de d (136) 
ω0 dt ω0 dt 

2π 
′′ 

2π
′′ 

ω 
′′ eb = − (eq sin(θ − ) − ed cos(θ − )) 

ω0 3 3 
′′ ′′ 1 

+ cos(θ − 
2π 

) 
de q 

+ 
1 

sin(θ − 
2π 

) 
de d (137) 

ω0 3 dt ω0 3 dt 
2π 

′′ 
2π

′′ 
ω 

′′ e = − (eq sin(θ + ) − ed cos(θ + )) c ω0 3 3 
′′ ′′ 1 

+ cos(θ +
2π 

) 
de q 

+ 
1 

sin(θ +
2π 

) 
de d (138) 

ω0 3 dt ω0 3 dt 

And, of course, 

θ = ω0t + δ (139) 
′′ ′′ eq = ψd (140) 
′′ ′′ ed = −ψq (141) 

′′ 
xadxkdlψf + xadxflψkd 

ψd = (142) 
xadxkdl + xadxfl + xkdlxfl 

′′ 
xaq 

ψ = ψkq (143) q xaq + xkql 
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11 Network Constraints 

This model may be embedded in a number of networks. Different configurations will result in 
different constraints on currents. Consider, for example, the situation in which all of the terminal 
voltages are constrained, but perhaps by unbalanced (not entirely positive sequence) sources. In 
that case, the differential equations for the three phase currents would be: 

′′ ′′ x dia ′′ 
x + 2xg [

d d ′′ ′′ 
] xg

= (va − ea) ′′ 
− (vb − eb ) + (vc − ec ) ′′ 

(144) 
ω0 dt x + 3xg x + 3xgd d 
′′ ′′ x dib ′′ 

x + 2xg [

d d ′′ ′′ 
] xg

= (vb − eb ) ′′ 
− (va − ea) + (vc − ec ) ′′ 

(145) 
ω0 dt x + 3xg x + 3xgd d 
′′ ′′ x dic ′′ 

x + 2xg [

d d ′′ ′′ 
] xg

= (vc − ec ) ′′ 
− (vb − eb ) + (va − ea) ′′ 

(146) 
ω0 dt x + 3xg x + 3xgd d 

12 Example: Line-Line Fault 

We are not, however, constrained to situations defined in this way. This model is suitable for 
embedding into network analysis routines. It is also possible to handle many different situations 
directly. Consider, for example, the unbalanced fault represented by the network shown in Figure 
5. This shows a line-line fault situation, with one phase still connected to the network. 

′′ eia 
′′ �� a 

� ra 
xd 

va ∧ ∧ ∧ ∩∩∩∩ + −
∨ ∨ 

′′ ebib x ′′ �� xg� ra d 
∧ ∧ ∧ ∩∩∩∩ + − ∩∩∩∩ 
∨ ∨ 

′′ e 
ra 

x ′′ �� c 
d 

∧ ∧ ∧ ∩∩∩∩ + −
∨ ∨ 

Figure 5: Line-Line Fault Network Model 

In this situation, we have only two currents to worry about, and their differential equations 
would be: 

dib ω0 ′′ ′′ = 
′′ 
(e − eb − 2raib) (147) 

dt 2x c 
d 

dia ω0 ′′ = 
′′ 

(va − e − raia) (148) 
dt xd + xg

a 

and, of course, ic = −ib. 
Note that here we have included the effects of armature resistance, ignored in the previous 

section but obviously important if the results are to be believed. 
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13 Permanent Magnet Machines 

Permanent Magnet machines are one state variable simpler than their wound-field counterparts. 
They may be accurately viewed as having constant field current. Assuming that we can define the 
internal (field) flux as: 

ψ0 = xadif0 (149) 

13.1 Model: Voltage Driven Machine 

We have a reasonably simple expression for the rotor currents, in the case of a voltage driven 
machine: 

[ ] [ ]

−1 [ ] 
id 

ikd 
= 

xd 

xad 

xad 

xkd 

ψd − ψ0 

ψkd − ψ0 

(150) 

[ ] [ ]

−1 [ ] 
iq 
ikq 

= 
xq 

xaq 

xaq 

xkq 

ψq 

ψkq 
(151) 

The simulation model then has six states: 

dψd 
= ω0vd + ωψq − ω0raid (152) 

dt 
dψq 

= ω0vq − ωψd − ω0raiq (153) 
dt 

dψkd 
= −ω0rkdikd (154) 

dt 
dψkq 

= −ω0rkqikq (155) 
dt 
dω ω0 

= (ψdiq − ψqid + Tm) (156) 
dt 2H 
dδ 

= ω − ω0 (157) 
dt 

13.2 Curent-Driven Machine Model 

In the case of a current-driven machine, rotor currents required in the simulation are: 

1 
ikd = (ψkd − xadid − ψ0) (158) 

xkd 

1 
ikq = (ψkq − xaqiq) (159) 

xkq 

Here, the “flux behind subtransient reactance” is, on the direct axis: 

′′ 
xkdlψ0 + xadψkd 

ψd = (160) 
xad + xkdl 

and the subtransient reactance is: 
′′ xd = xal + xad||xkdl (161) 
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( ) 

On the quadrature axis, 

ψ ′′ = 
xadψkq 

(162) q xad + xkql 

and 
′′ x = xal + xaq||xkql (163) q 

In this case there are only four state equations: 

dψkd 
= −ω0rkdikd (164) 

dt 
dψkq 

= −ω0rkqikq (165) 
dt 
dω ω0 ′′ ′′ = eq iq + edid + Tm (166) 
dt 2H 
dδ 

= ω − ω0 (167) 
dt 

The interconnections to and from the network are the same as in the case of a wound-field 
machine: in the “forward” direction, from network to machine: 

2π 2π 
id = ia cos(θ) + ib cos(θ − ) + ic cos(θ + ) (168) 

3 3 
2π 2π 

iq = −ia sin(θ) − ib sin(θ − ) − ic sin(θ + ) (169) 
3 3 

and, in the reverse direction, from the machine to the network: 

′′ 
ω 

′′ ′′ e = − (eq sin(θ) − ed cos(θ)) a ω0 

′′ ′′ 1 
+ cos(θ) 

de q 
+ 

1 
sin(θ) 

de d (170) 
ω0 dt ω0 dt 

2π 
′′ 

2π
′′ 

ω 
′′ eb = − (eq sin(θ − ) − ed cos(θ − )) 

ω0 3 3 
′′ ′′ 1 

+ cos(θ − 
2π 

) 
de q 

+ 
1 

sin(θ − 
2π 

) 
de d (171) 

ω0 3 dt ω0 3 dt 
2π 

′′ 
2π

′′ 
ω 

′′ e = − (eq sin(θ + ) − ed cos(θ + )) c ω0 3 3 
′′ ′′ 1 

+ cos(θ +
2π 

) 
de q 

+ 
1 

sin(θ +
2π 

) 
de d (172) 

ω0 3 dt ω0 3 dt 

13.3 PM Machines with no damper 

PM machines without much rotor conductivity may often behave as if they have no damper winding 
at all. In this case the model simplifies even further. Armature currents are: 

1 
id = (ψd − ψ0) (173) 

xd 

1 
iq = ψq (174) 

xq 
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The state equations are: 

dψd 
= ω0vd + ωψq − ω0raid (175) 

dt 
dψq 

= ω0vq − ωψd − ω0raiq (176) 
dt 
dω ω0 

= (ψdiq − ψqid + Tm) (177) 
dt 2H 
dδ 

= ω − ω0 (178) 
dt 

13.4 Current Driven PM Machines with no damper 

In the case of no damper the machine becomes quite simple. There is no “internal flux” on the 
quadrature axis. Further, there are no time derivatives of the internal flux on the d- axis. The only 
machine state equations are mechanical: 

dω ω0 
= (ψ0iq + Tm) (179) 

dt 2H 
dδ 

= ω − ω0 (180) 
dt 

The “forward” network interface is as before: 

2π 2π 
id = ia cos(θ) + ib cos(θ − ) + ic cos(θ + ) (181) 

3 3 
2π 2π 

iq = −ia sin(θ) − ib sin(θ − ) − ic sin(θ + ) (182) 
3 3 

and, in the reverse direction, from the machine to the network, things are a bit simpler than before: 

ω
′′ e = − ψ0 sin(θ) (183) a ω0 

ω 2π
′′ eb = − ψ0 sin(θ − ) (184) 

ω0 3 
ω 2π

′′ e = − ψ0 sin(θ + ) (185) c ω0 3 

(186) 
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