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1 Introduction 

Losses in electric machines arise from conduction and magnetic hysteresis. Conduction losses are 
attributed to straightforward transport conduction and to eddy currents. Transport losses are 
relatively easy to calculate so we will not pay them much attention. Eddy currents are more 
interesting and result in frequency dependent conduction losses in machines. 

Eddy currents in linear materials can often be handled rigorously, but eddy currents in saturat­
ing material are more difficult and are often handled in a heuristic fashion. We present here both 
analytical and semi-emiprical ways of dealing with such losses. 

We start with surface impedance: the ratio of electric field to surface current. This is important 
not just in calculating machine losses, but also in describing how some machines operate. 

2 Surface Impedance of Uniform Conductors 

The objective of this section is to describe the calculation of the surface impedance presented by a 
layer of conductive material. Two problems are considered here. The first considers a layer of linear 

material backed up by an infinitely permeable surface. This is approximately the situation presented 
by, for example, surface mounted permanent magnets and is probably a decent approximation to 
the conduction mechanism that would be responsible for loss due to asynchronous harmonics in 
these machines. It is also appropriate for use in estimating losses in solid rotor induction machines 
and in the poles of turbogenerators. The second problem, which we do not work here but simply 
present the previously worked solution, concerns saturating ferromagnetic material. 

2.1 Linear Case 

The situation and coordinate system are shown in Figure 1. The conductive layer is of thicknes T 
and has conductivity σ and permeability µ0. To keep the mathematical expressions within bounds, 
we assume rectilinear geometry. This assumption will present errors which are small to the extent 
that curvature of the problem is small compared with the wavenumbers encountered. We presume 
that the situation is excited, as it would be in an electric machine, by a current sheet of the form 

Kz = Re Kej(ωt−kx) 

In the conducting material, we must satisfy the diffusion equation: 

∂H ∇2H = µ0σ 
∂t 
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Figure 1: Axial View of Magnetic Field Problem 

In view of the boundary condition at the back surface of the material, taking that point to be 
y = 0, a general solution for the magnetic field in the material is: 

� � 

Hx = Re A sinhαyej(ωt−kx) 

� 

k 
� 

Hy = Re j A coshαyej(ωt−kx) 

α 

where the coefficient α satisfies: 
α2 = jωµ0σ + k2 

and note that the coefficients above are chosen so that H has no divergence. 
Note that if k is small (that is, if the wavelength of the excitation is large), this spatial coefficient 

α becomes 
1 + j

α = 
δ 

where the skin depth is: 

2 
δ = 

ωµ0σ 

Faraday’s law: 
∂B ∇× E = −
∂t 

gives: 
ω 

E = −µ0 Hz k y 

Now: the “surface current” is just 
K = −Hxs 

so that the equivalent surface impedance is: 

E ω 
Z = z = jµ0 cothαT 

α−Hx 

A pair of limits are interesting here. Assuming that the wavelength is long so that k is negligible, 
then if αT is small (i.e. thin material), 

ω 1 
Z → jµ0 = 

α2T σT 
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On the other hand as αT → ∞, 
1 + j

Z → 
σδ 

Next it is necessary to transfer this surface impedance across the air-gap of a machine. So, 
assume a new coordinate system in which the surface of impedance Z is located at y = 0, and we s 

wish to determine the impedance Z = −Ez/Hx at y = g. 
In the gap there is no current, so magnetic field can be expressed as the gradient of a scalar 

potential which obeys Laplace’s equation: 

H = −∇ψ 

and 
∇ 2ψ = 0 

Ignoring a common factor of ej(ωt−kx), we can express H in the gap as: 

−ky H = jk ψ 
+ 
eky + ψ ex − 

−ky H = −k ψ eky − ψ 
− 
ey + 

At the surface of the rotor, 
E = −HxZz s 

or 
−ωµ0 = jkZs ψ 

+ 
+ ψψ 

+ 
− ψ 

− − 

and then, at the surface of the stator, 

ekg − ψ 
−

−kg e
Z = 

Ez = jµ0 
ω ψ 

+ 

ekg + ψ e−kg 
−
Hx k ψ 

+ − 

A bit of manipulation is required to obtain: 

ω ekg (ωµ0 − jkZs) − e−kg (ωµ0 + jkZs)Z = jµ0 
k ekg (ωµ0 − jkZs) + e−kg (ωµ0 + jkZs) 

It is useful to note that, in the limit of Zs → ∞, this expression approaches the gap impedance 

ωµ0
Z = jg k2g 

and, if the gap is small enough that kg → 0, 

Z Z s→ g||Z
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3 Iron 

Electric machines employ ferromagnetic materials to carry magnetic flux from and to appropriate 
places within the machine. Such materials have properties which are interesting, useful and prob­
lematical, and the designers of electric machines must deal with this stuff. The purpose of this 
note is to introduce the most salient properties of the kinds of magnetic materials used in electric 
machines. 

We will be concerned here with materials which exhibit magnetization: flux density is something 
other than ~B = µ0H. Generally, we will speak of hard and soft magnetic materials. Hard materials 
are those in which the magnetization tends to be permanent, while soft materials are used in 
magnetic circuits of electric machines and transformers. Since they are related we will find ourselves 
talking about them either at the same time or in close proximity, even though their uses are widely 
disparite. 

3.1 Magnetization: 

It is possible to relate, in all materials, magnetic flux density to magnetic field intensity with a 
consitutive relationship of the form: 

B = µ0 H + ~~ ~ M 

where magnetic field intensity H and magnetization M are the two important properties. Now, 
in linear magnetic material magnetization is a simple linear function of magnetic field: 

M = χmH 

so that the flux density is also a linear function: 

B = µ0 (1 + χm)H 

Note that in the most general case the magnetic susceptibility χm might be a tensor, leading 
to flux density being non-colinear with magnetic field intensity. But such a relationship would still 
be linear. Generally this sort of complexity does not have a major effect on electric machines. 

3.2 Saturation and Hysteresis 

In useful magnetic materials this nice relationship is not correct and we need to take a more general 
view. We will not deal with the microscopic picture here, except to note that the magnetization is 
due to the alignment of groups of magnetic dipoles, the groups often called domaines. There are 
only so many magnetic dipoles available in any given material, so that once the flux density is high 
enough the material is said to saturate, and the relationship between magnetic flux density and 
magnetic field intensity is nonlinear. 

Shown in Figure 2, for example, is a “saturation curve” for a magnetic sheet steel that is 
sometimes used in electric machinery. Note the magnetic field intensity is on a logarithmic scale. 
If this were plotted on linear coordinates the saturation would appear to be quite abrupt. 

At this point it is appropriate to note that the units used in magnetic field analysis are not 
always the same nor even consistent. In almost all systems the unit of flux is the weber (Wb), 
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Figure 2: Saturation Curve: Commercial M-19 Silicon Iron
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Courtesy of United States Steel Corporation. (U.S. Steel).
U.S. Steel accepts no liability for reliance on any information contained in the graphs shown above.
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Figure 3: Hysteresis Curve Nomenclature 

which is the same as a volt-second. In SI the unit of flux density is the tesla (T), but many people 
refer to the gauss (G), which has its origin in CGS. 10,000 G = 1 T. Now it gets worse, because 
there is an English system measure of flux density generally called kilo-lines per square inch. This 
is because in the English system the unit of flux is the line. 108 lines is equal to a weber. Thus a 
Tesla is 64.5 kilolines per square inch. 

The SI and CGS units of flux density are easy to reconcile, but the units of magnetic field 
are a bit harder. In SI we generally measure H in amperes/meter (or ampere-turns per meter). 
Often, however, you will see magnetic field represented as Oersteds (Oe). One Oe is the same as 
the magnetic field required to produce one gauss in free space. So 79.577 A/m is one Oe. 

In most useful magnetic materials the magnetic domaines tend to be somewhat “sticky”, and a 
more-than-incremental magnetic field is required to get them to move. This leads to the property 
called “hysteresis”, both useful and problematical in many magnetic systems. 

Hysteresis loops take many forms; a generalized picture of one is shown in Figure 3. Salient 
features of the hysteresis curve are the remanent magnetization Br and the coercive field Hc. Note 
that the actual loop that will be traced out is a function of field amplitude and history. Thus there 
are many other “minor loops” that might be traced out by the B-H characteristic of a piece of 
material, depending on just what the fields and fluxes have done and are doing. 

Hysteresis is important for two reasons. First, it represents the mechanism for “trapping” 
magnetic flux in a piece of material to form a permanent magnet. We will have more to say about 
that anon. Second, hysteresis is a loss mechanism. To show this, consider some arbitrary chunk of 
material for which we can characterize an MMF and a flux: 

~ ℓF = N I = H d~· 
� 

V 
�� 

~ AΦ = dt = B d ~
N Area 

· 
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Energy input to the chunk of material over some period of time is


� � � � �� 

w = V Idt = FdΦ = H d~ d ~ d ~~ ℓ B A dt 
t 

· · 

Now, imagine carrying out the second (double) integral over a continuous set of surfaces which 
are perpendicular to the magnetic field H. (This IS possible!). The energy becomes: 

~ Bdvol dt w = H d ~
t 

· 

and, done over a complete cycle of some input waveform, that is: 

w = Wmdvol 
vol 

~ BWm = H d ~
t 

· 

That last expression simply expresses the area of the hysteresis loop for the particular cycle. 
Generally, for most electric machine applications we will use magnetic material characterized 

as “soft”, having as narrow a hysteresis loop (and therefore as low a hysteretic loss) as possible. At 
the other end of the spectrum are “hard” magnetic materials which are used to make permanent 
magnets. The terminology comes from steel, in which soft, annealed steel material tends to have 
narrow loops and hardened steel tends to have wider loops. However permanent magnet technology 
has advanced to the point where the coercive forces possible in even cheap ceramic magnets far 
exceed those of the hardest steels. 

3.3 Conduction, Eddy Currents and Laminations: 

Steel, being a metal, is an electrical conductor. Thus when time varying magnetic fields pass 
through it they cause eddy currents to flow, and of course those produce dissipation. In fact, for 
almost all applications involving “soft” iron, eddy currents are the dominant source of loss. To 
reduce the eddy current loss, magnetic circuits of transformers and electric machines are almost 
invariably laminated, or made up of relatively thin sheets of steel. To further reduce losses the steel 
is alloyed with elements (often silicon) which poison the electrical conductivity. 

There are several approaches to estimating the loss due to eddy currents in steel sheets and in 
the surface of solid iron, and it is worthwhile to look at a few of them. It should be noted that this 
is a “hard” problem, since the behavior of the material itself is difficult to characterize. 

3.4 Complete Penetration Case 

Consider the problem of a stack of laminations. In particular, consider one sheet in the stack 
represented in Figure 4. It has thickness t and conductivity σ. Assume that the “skin depth” 
is much greater than the sheet thickness so that magnetic field penetrates the sheet completely. 
Further, assume that the applied magnetic flux density is parallel to the surface of the sheets: 

jωt B = ~izRe 
√

2B0e
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Figure 4: Lamination Section for Loss Calculation 

Now we can use Faraday’s law to determine the electric field and therefore current density in 
the sheet. If the problem is uniform in the x- and z- directions, 

∂Ex 

∂y 
= −jω0B0 

Note also that, unless there is some net transport current in the x- direction, E must be anti­
symmetric about the center of the sheet. Thus if we take the origin of y to be in the center, electric 
field and current are: 

E = −jωB0yx 

J = −jωB0σy x 

Local power dissipated is 

P (y) = ω2B0
2σy 2 = 

|J |2 
σ 

To find average power dissipated we integrate over the thickness of the lamination: 

2 
t 

2 

t 

22 1 
ω2B0

2σ 2 ω2B2 
0 t

2σ< P >= P (y)dy = dy =y 
12 t t0 0 

Pay attention to the orders of the various terms here: power is proportional to the square of 
flux density and to the square of frequency. It is also proportional to the square of the lamination 
thickness (this is average volume power dissipation). 

As an aside, consider a simple magnetic circuit made of this material, with some length ℓ and 
area A, so that volume of material is ℓA. Flux lined by a coil of N turns would be: 

Λ = NΦ = NAB0 

and voltage is of course just V = jwL. Total power dissipated in this core would be: 

1 V 2 
Pc = Aℓ ω2B0

2t2σ = 
12 Rc


where the equivalent core resistance is now


A 12N2

Rc = 

ℓ σt2 
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Figure 5: Idealized Saturating Characteristic 

3.5 Eddy Currents in Saturating Iron 

The same geometry holds for this pattern, although we consider only the one-dimensional problem 
(k → 0). The problem was worked by McLean and his graduate student Agarwal [2] [1]. They 
assumed that the magnetic field at the surface of the flat slab of material was sinusoidal in time 
and of high enough amplitude to saturate the material. This is true if the material has high 
permeability and the magnetic field is strong. What happens is that the impressed magnetic field 
saturates a region of material near the surface, leading to a magnetic flux density parallel to the 
surface. The depth of the region affected changes with time, and there is a separating surface (in 
the flat problem this is a plane) that moves away from the top surface in response to the change 
in the magnetic field. An electric field is developed to move the surface, and that magnetic field 
drives eddy currents in the material. 

Assume that the material has a perfectly rectangular magnetization curve as shown in Figure 5, 
so that flux density in the x- direction is: 

Bx = B0sign(Hx) 

The flux per unit width (in the z- direction) is: 

−∞ 

Φ = Bxdy 
0 

and Faraday’s law becomes: 
∂Φ 

Ez = 
∂t 

while Ampere’s law in conjunction with Ohm’s law is: 

∂Hx 
= σEz

∂y 

Now, McLean suggested a solution to this set in which there is a “separating surface” at depth ζ 
below the surface, as shown in Figure 6 . At any given time: 

y
Hx = Hs(t) 1 + 

ζ 
Hs

Jz = σEz = 
ζ 
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Figure 6: Separating Surface and Penetration Depth 

That is, in the region between the separating surface and the top of the material, electric field 
Ez is uniform and magnetic field Hx is a linear function of depth, falling from its impressed value at 
the surface to zero at the separating surface. Now: electric field is produced by the rate of change 
of flux which is: 

∂Φ ∂ζ 
Ez = = 2Bx

∂t ∂t 
Eliminating E, we have: 

∂ζ Hs
2ζ = 
∂t σBx 

and then, if the impressed magnetic field is sinusoidal, this becomes: 

dζ2 H0 
= 
σB0 

| sin ωt
dt 

| 

This is easy to solve, assuming that ζ = 0 at t = 0, 

2H0 ωt 
ζ = sin 

ωσB0 2 

Now: the surface always moves in the downward direction (as we have drawn it), so at each half 
cycle a new surface is created: the old one just stops moving at a maximum position, or penetration 
depth: 

2H0
δ = 

ωσB0 

This penetration depth is analogous to the “skin depth” of the linear theory. However, it is an 
absolute penetration depth. 

The resulting electric field is: 

2H0 ωt 
Ez = cos 0 < ωt < π 

σδ 2 

This may be Fourier analyzed: noting that if the impressed magnetic field is sinusoidal, only the 
time fundamental component of electric field is important, leading to: 

8 H0
Ez = (cos ωt + 2 sin ωt + . . .)

3π σδ 
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Complex surface impedance is the ratio between the complex amplitude of electric and magnetic 
field, which becomes: 

E 8 1 
Z = z = (2 + j)s H 3π σδ x 

Thus, in practical applications, we can handle this surface much as we handle linear conductive 
surfaces, by establishing a skin depth and assuming that current flows within that skin depth of 
the surface. The resistance is modified by the factor of 16 and the “power factor” of this surface is 3π 

about 89 % (as opposed to a linear surface where the “power factor” is about 71 %. 
Agarwal suggests using a value for B0 of about 75 % of the saturation flux density of the steel. 

Semi-Empirical Method of Handling Iron Loss 

Neither of the models described so far are fully satisfactory in describing the behavior of laminated 
iron, because losses are a combination of eddy current and hysteresis losses. The rather simple 
model employed for eddy currents is precise because of its assumption of abrupt saturation. The 
hysteresis model, while precise, would require an empirical determination of the size of the hysteresis 
loops anyway. So we must often resort to empirical loss data. Manufacturers of lamination steel 
sheets will publish data, usually in the form of curves, for many of their products. Here are a few 
ways of looking at the data. 

A low frequency flux density vs. magnetic field (“saturation”) curve was shown in Figure 2. 
Included with that was a measure of the incremental permeability 

dB 
′ µ = 

dH 

In some machine applications either the “total” inductance (ratio of flux to MMF) or “incremental” 
inductance (slope of the flux to MMF curve) is required. In the limit of low frequency these numbers 
may be useful. 

For designing electric machines, however, a second way of looking at steel may be more useful. 
This is to measure the real and reactive power as a function of magnetic flux density and (sometimes) 
frequency. In principal, this data is immediately useful. In any well-designed electric machine the 
flux density in the core is distributed fairly uniformly and is not strongly affected by eddy currents, 
etc. in the core. Under such circumstances one can determine the flux density in each part of the 
core. With that information one can go to the published empirical data for real and reactive power 
and determine core loss and reactive power requirements. 

Figure 7 shows core loss and “apparent” power per unit mass as a function of (RMS) induction 
for 29 gage, fully processed M-19 steel. The two left-hand curves are the ones we will find most 
useful. “P ” denotes real power while “Pa ” denotes “apparent power”. The use of this data is quite 
straightforward. If the flux density in a machine is estimated for each part of the machine and the 
mass of steel calculated, then with the help of this chart a total core loss and apparent power can 
be estimated. Then the effect of the core may be approximated with a pair of elements in parallel 
with the terminals, with: 

Rc = 
q|V |2 

P 

Xc = 
q|V |2 

Q 
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Figure 7: Real and Apparent Loss: M19, Fully Processed, 29 Ga
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M-19, 29 Ga, Fully Processed 
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Figure 8: Steel Sheet Core Loss Fit vs. Flux Density and Frequency 

Q = Pa 
2 − P 2 

Where q is the number of machine phases and V is phase voltage. Note that this picture is, strictly 
speaking, only valid for the voltage and frequency for which the flux density was calculated. But 
it will be approximately true for small excursions in either voltage or frequency and therefore 
useful for estimating voltage drop due to exciting current and such matters. In design program 
applications these parameters can be re-calculated repeatedly if necessary. 

“Looking up” this data is a bit awkward for design studies, so it is often convenient to do a 
“curve fit” to the published data. There are a large number of possible ways of doing this. One 
method that has been found to work reasonably well for silicon iron is an “exponential fit”: 

B 
�ǫB f 

�ǫF 

P ≈ P0 
B0 f0 

This fit is appropriate if the data appears on a log-log plot to lie in approximately straight lines. 
Figure 8 shows such a fit for the same steel sheet as the other figures. 

For “apparent power” the same sort of method can be used. It appears, however, that the simple 
exponential fit which works well for real power is inadequate, at least if relatively high inductions 
are to be used. This is because, as the steel saturates, the reactive component of exciting current 
rises rapidly. I have had some success with a “double exponential” fit: 

B 
�ǫ0 B 

�ǫ1 

VA ≈ VA0 + VA1
B0 B0 
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Table 1: Exponential Fit Parameters for Two Steel Sheets 

29 Ga, Fully Processed 
M-19 M-36 

Base Flux Density B0 1 T 1 T 
Base Frequency f0 60 Hz 60 Hz 
Base Power (w/lb) P0 0.59 0.67 
Flux Exponent ǫB 1.88 1.86 
Frequency Exponent ǫF 1.53 1.48 
Base Apparent Power 1 V A0 1.08 1.33 
Base Apparent Power 2 V A1 .0144 .0119 
Flux Exponent ǫ0 1.70 2.01 
Flux Exponent ǫ1 16.1 17.2 

To first order the reactive component of exciting current will be linear in frequency. 
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