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Problem 1: DC Generator 
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N = Rotor speed in RPM 

Figure 1: DC Generator Test Curve 

Operating with no load, the situation is as shown in Figure 1. The equilibrium situation is 
that 

Rf If = Ea − RaIf 

The trick is to characterize Ea, which we may do using a piecewise-linear method: 

if 0 < If < I1 Ea = GΩIf


if I1 < If < I2 Ea = E1 + G1Ω (If − I1)


if I2 < If Ea = E2 + G2Ω (If − I2)


Note that as Ω changes, so do the breakpoints E1 and E2 and the slopes GΩ, G1Ω and G2Ω. 

In the first part of the problem we are simply interested in seeing if there is a solution: if 
there is any value for which the field current line crosses the voltage characteristic. This will 
be the case if: 

GΩ ≥ Rf + Ra 

Since 
200 

G = 
Ω0


We find the speed at which the machine will just self-excite as


Ωs Rf + Ra 
= 

Ω0 200 

1 



This scaling works in RPM too, so the speed at which the thing will self-excite is:


75 
Ns = 2000 × = 750RPM 

200 

In each of the (piecewise) linear ranges, we can characterize operation in the following way:


V = Rf If = En + Rn(If − In) − Ra (If + Ig) 

where Ig is load current and Rn = GnΩ may be used because we are running this at constant

speed.


This becomes, for each region:


En − RnIn − RaIg
If = 

Ra + Rf − Rn 

The no-load field current (and hence voltage) are found using this expression in the upper 
range with, obviously, zero load current. This evaluates to about 279 volts (which is consistent 
with the drawing in Figure 1. 

To find the limits of the regions, this expression can be solved for the value of Ig which results 
in field current being the boundary current for that region, or: 

En − (Ra + Rf ) In
Ign = 

Ra 

And, once field current is found within each region the terminal voltage is simply: 

V = En + Rn (If − In) − RaIg 

The values of load current Ig that correspond to the two break points are 100 A (upper break­
point) and 125 A (lower breakpoint). The full load voltage curve is shown in Figure 2.Note 
that the machine will not sustain load currents above 125 A: those will cause ’voltage collapse’. 

To ’flat compound’ the machine we must provide ΩGs = 1Ω. At the operating point the 
50 

incremental field characteristic is ΩGf = 3 Ω, so the number of series field turns required is 
3Ns = 500 × 50 = 30.


Simulation is straightforward. Using If as the single state variable,


dIf 1 
= (Ea − (Ra + Rf )If )

dt Lf 

and Ea must satisfy the nonlinear relationship: 

if If < 1 Ea = 200If 

if 1 < If < 2 Ea = 200 + 50(If − 1) 

50 
if 2 < If Ea = 250 + 

3 
(If − 2) 

The simulation is shown in Figure 3. 
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Figure 2: Voltage vs. load current 

Problem 2: Compound Motor 

With no series field winding, the machine is characterized by: 

V − Gf If Ω 
Ia = 

Ra 

V 
If = 

Rf 

T = Gf If Ia 

With the machine in long shunt connection the equivalent expressions are: 

V − Gf If Ω 
Ia = 

Ra + GsΩ 
V 

If = 
Rf 

T = (Gf If + GsIa) Ia 
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Figure 3: Voltage Buildup 

Short shunt operation is one step more complicated (See Figure 4). We can write loop 
equations like this: 

V = (Rs + Ra + GsΩ) Ia + (Rs + Gf Ω) If 

0 = (Ra + GsΩ) Ia + (Gf Ω − Rf ) If 

It is just as easy to let MATLAB solve this linear system. The results are shown in Figures 5, 
6 and 7. 

Problem 3: Losses The excitation can be split up into two traveling waves: 

1 j(ωt+kx)cos kx cos ωt = Re ej(ωt−kx) +
1 
e

2 2 

We need to solve this problem for only one of these and then, if we are only interested in the 
average dissipation, multiply by two. 

To start, note that below the sheet the complex amplitudes of the fields must be simply: 
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Figure 4: Compound Motor Hookups 

H
Sb = 

y 
= j

Hx 

Next, see that any current in that sheet must be related to the flux density through the sheet: 

ω ω 
K = − µ0σsHy = −j µ0σsHxb z k k

Then, since x- directed field above the sheet is equal to x- directed field below the sheet minus 
the z-directed surface current: 

ω 
1 + j µ0σsHxa = Hxb 

k

and then, since Hy = jHxb, we have the ratio of fields at the top of the sheet: 

H
S0 = 

y 
=

1 + j

j 
ωHx k 
µ0σs 

We can now transform this field ratio to the surface of the stator, using the form of expression 
shown in the problem statement. There is a bit of algebra to be done, but that same field 
ratio is found to be, iin a straightforward way: 

S0 cosh kg + j sinh kg 
S = js S0 sinh kg + j cosh kg 

Now we can turn this into a surface impedance by using: 

E ω 
Z = z = µ0Ss −H k

s 
x 

Note that we are using a surface impedance which is the ratio of z- directed electric field to 
z- directed current in the region below the stator. 
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6.685 PS8, Problem 2 No Shunt 
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Figure 5: No Series Field 

Loss density is found by using, for the current driven case: 

1 
Pc = |Kz|

2Re {Zs}2

In the case of a constrained flux, the stator provides the equivalent of a fixed electric field: 

ω 
Ezs = − By

k 

And the loss expression becomes: 

1 
� 

ω 
�2 � � 

1 
Ps = By Re 

2 k Zs 

The results are calculated in a script and are shown in Figure 8. 
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6.685 PS8, Problem 2 Long Shunt
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Figure 6: Series Field in Long Shunt Connection 
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6.685 PS8, Problem 3 Short Shunt
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Figure 7: Series Field in Short Shunt Connection 
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Figure 8: Loss vs. conductivity: Current excitation solid, Flux excitation dashed 
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% 6.685 Problem Set 8, Problem 1


% Getting DC Generator Output Voltage

% Parameters

Ra = 1;

Rf = 74;

E1 = 200;

E2 = 250;

I1 = 1;

I2 = 2;

R1 = 50;

R2 = 50/3;


If0 = (E2-R2*I2)/(Ra+Rf-R2)

V0 = E2 + R2 * (If0-I2)


Ig1 = (E1-(Ra+Rf)*I1)/Ra

Ig2 = (E2-(Ra+Rf)*I2)/Ra


I_g2 = 0:Ig2/100:Ig2;

I_f2 = (E2-R2*I2 - Ra .* I_g2) ./ (Rf+Ra-R2);

V_2 = E2 + R2 .* (I_f2 - I2);


Id = Ig1-Ig2;

dI = Id/200;

I_g1 = Ig2+dI:dI:Ig1;

I_f1 = (E1-R1*I1 - Ra .* I_g1) ./ (Rf+Ra-R1);

V_1 = E1 + R1 .* (I_f1 - I1);


I_g = [I_g2 I_g1];

V_g = [V_2 V_1];


figure(1)

plot(I_g, V_g)

title(’Problem Set 8, Problem 1’)

ylabel(’Output Voltage’)

xlabel(’Output Current’)

grid on
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-----------------

% Simulation for Problem 8.1

I_f0 = 6/200;

t0 = 0:.001:.1;

[t, I_f] = ode23(’dcmsim’, t0, I_f0);


Ea = zeros(length(t));

for i = 1:length(t)

if I_f(i)<1,


Ea(i) = 200 * I_f(i);

elseif I_f(i) < 2,


Ea(i) = 200 + 50 *(I_f(i)-1);

else


Ea(i) = 250 + (50/3) * (I_f(i)-2);

end

end

V = (100/101) .* Ea;


figure(1)

clf

subplot 211

plot(t, I_f)

title(’Voltage Buildup’)

ylabel(’Field Current’)

grid on

subplot 212

plot(t, V)

ylabel(’Terminal Voltage’)

xlabel(’Time, Seconds’)

grid on


function dI_f = dcmsim(t, I_f)

% simulation script for Problem 8.1, voltage buildup

Ra = 1;

Rf = 74;

L = 1;

if I_f<1,


Ea = 200 * I_f;

elseif I_f < 2,


Ea = 200 + 50 *(I_f-1);

else


Ea = 250 + (50/3) * (I_f-2);

end

dI_f = (1/L)*(Ea-(Ra+Rf)*I_f);
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% Compound Motor


Rf = 300;

Rs = 2;

Ra = .25;

Nf = 500;

Ns = 20;

Nz = 1000;

omt = 2*pi*Nz/60;

Vt = 600;

If0 = Vt/Rf;


Gf = Vt/(omt*If0);

Gs = Gf*Ns/Nf;

N = 0:5:Nz;

om = (pi/30) .* N;


% Part 1: No Shunt

If = Vt/Rf;

Ia = (Vt - Gf*If .* om) ./ Ra;


T = Gf * If .* Ia;

figure(2)

subplot(211)

plot(N, T);

title(’6.685 PS8, Problem 2 No Shunt’)

ylabel(’Torque, N-m’);

subplot(212)

plot(N, Ia)

ylabel(’Current Ia, A’)

xlabel(’Speed, RPM’)


%Part 2: Long Shunt

If = Vt/Rf;

Ia = (Vt - Gf*If .* om) ./ (Ra + Rs + Gs .* om);


T = (Gf .* If + Gs .* Ia) .* Ia;

figure(3)

subplot(211)

plot(N, T);

title(’6.685 PS8, Problem 2 Long Shunt’)

ylabel(’Torque, N-m’);

subplot(212)

plot(N, Ia+If)

ylabel(’Current Ia+If, A’)
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xlabel(’Speed, RPM’)


%Part 3: Short Shunt


for i = 1:length(N);

M = [Rs+Ra+Gs*om(i) Rs+Gf*om(i);Ra+Gs*om(i) Gf*om(i)-Rf];

I = M\[Vt;0];


Ia(i) = I(1);

If(i) = I(2);

end


T = (Gf .* If + Gs .* Ia) .* Ia;

figure(4)

subplot(211)

plot(N, T);

title(’6.685 PS8, Problem 3 Short Shunt’)

ylabel(’Torque, N-m’);

subplot(212)

plot(N, Ia+If)

ylabel(’Current Ia+If, A’)

xlabel(’Speed, RPM’)
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% PS8, Problem 3


Ks = 80000; % amplitude of current source drive

Bs = .1; % and of alternate flux source


lambda = .05;

g = .005;

f=1000;

rsig = (0:.001:1);

sigs = .001*6e7 .* rsig;

muzero = pi*4e-7;


% wavelength

% gap

% frequency

% range of relative conductivities

% surface conductivities


k = 2*pi/lambda; % here is wavenumber

om = 2*pi .* f; % and frequency in radians/second


% first get surface coefficient at top of sheet

S0 = j ./ (1 + j*(muzero .* sigs ./ k) .* om);

% then the same at the stator surface

S = j .* (S0 .* cosh(k*g) + j*sinh(k*g)) ./ (S0 .* sinh(k*g) + j*cosh(k*g));

% now the surface impedance

Zs = (muzero .* om ./ k) .* S;

% Here is loss when driven by a current source

% Note this loss is half the peak value because drive is a cosine in space

P_c = .25*Ks^2 .* real(Zs);

% and here is loss when driven by a ’flux source’

P_v = .25 .* ((om ./ k) .* Bs) .^2 .* real(1 ./ Zs);


figure(6)

plot(rsig, P_c, rsig, P_v, ’--’)

title(’Problem Set 8, Problem 3’)

ylabel(’Average Loss, w/m^2’)

xlabel(’Conductivity relative to 1 mm of copper’)
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