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Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.685 Electric Machines 

Problem Set 1 Solutions September 10, 2005 

Problem 1: If we assume, as suggested in the problem statement, that fields outside the coil can 
be ignored, magnetic field inside the coil is simply 

Ni 
H = ~iz 

L 

and outside the coil magnetic field is zero. On the inner surface of the coil the normal vector 
is −~ir and 

Trr = −
µ0 

Hz 

2 

2


so that ’traction’ on the surface is pressure pushing out:


µ0 Ni 
�2 

Pr = 
2 L 

Hoop force per unit length is just pressure times radius: 

Fh µ0 Ni 
�2 

= RPr = R 
L 2 L 

To do this same problem using the principal of virtual work, see that co-energy is just co-
energy per unit volume times volume, or 

u0 Ni 
�2 

′ W = πR2Lm 2 L 

Hoop force is the first derivative of co-energy with respect to hoop circumference, which is 
C = 2πR: 

′ ′ ∂W 1 ∂W 1 ∂ µ0 Ni 
�2 

πR2L = 
µ0 Ni 

�2 
mFh = m = = RL 

∂C 2π ∂R 2π ∂R 2 L 2 L 

to get hoop force per unit length, divide by L and we get the same answer. 
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Figure 1: Current in coil for Problem 2 
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Problem 2: I have re-drawn the current waveform to show my notation for time intervals (Fig­
ure 1). If we note Hz as magnetic field within the conductive cylinder, current in that cylinder 
must be: 

σts ∂ 
Kθ = − µ0πRi

2Hz = Ts 

∂Hz 

2πRi ∂t ∂t 

where ts and Ri are shell thickness and radius, respectively. The shell time constant is 

µ0σtsR 
Ts = 

2 

If Kθ is azimuthal current in the shell, field inside the shell is: 

Ni 
Hz = Kθ + 

L 

so that 
∂Hz Ni 

Ts + Hz = 
∂t L 

Ni Now we have to patch together a solution. Note that if we note Hz0 = 
L 

, the step response 
of our differential equation would be: 

t 
� 

Hz

s = Hz0 1 − e 
− 

Ts 

Since the ramp which is the current waveform during interval 1 is simply the integral of a 
step, and noting that the response of an ODE to the integral of a waveform is the integral of 
the response to the waveform itself, the response during the first interval is 

t 
� 

t 

Hz1 = 
Hz0 

1 − e 
− 

T

′ 

s dt = Hz0 
0 Tr 

t � 
t 
� 

− 
Ts 

1 − e 
− 

Ts 

Tr Tr 

At the end of this interval the field has risen to: 

H(1) 
Tr 

= Hz0 1 − 
Ts 

1 − e 
− 

Ts 
z Tr 

During the second time interval the excitation is constant and we have the equivalent of a 
step response with an initial condition: 

� � t2
−

Hz2 = Hz0 − Hz0 − Hz 

(1) e Ts 

where t2 is time from the start of interval 2. With a little bit of manipulation this is found 
to be: 

� � � � 
Tr t2

−
Hz2 = Hz0 1 − 

Ts 
1 − e 

− 
Ts e Ts 

Tr 

In the third time interval we have an excitation which is the same as the steady state minus 

the same ramp as started the problem: 

t3t3
Hz3 = Hz2 − Hz0 − 

Ts 
1 − e 

− 
Ts 

Tr Tr 

Writing that out and evaluating at the end of the third time interval, when excitation current 
reaches zero, 

� � �� �� 

H(3) 
Tr To+Tr 

= Hz0 
Ts 

1 − e 
− 

Ts 1 − e 
− 

Ts 
z Tr 
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and in the fourth time interval the system is homogeneous: 

Hz4 = H(3) − 
t4 

e Ts 
z 

It is relatively easy in MATLAB to build up the waveforms for Hz by simply concatenating 
the time periods. Shown in Figure 2 are the field inside of the cylinder and outside (which is 

Ni just 
L 

). 

6.685 Problem 1.2 Axial Field 
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Figure 2: Magnetic Fields 

Net pressure on the cylinder is, noting that the normal vector inside is just −~ir and outside 
is ~ir, 

Pr = 
µ0 

H2 
− 

Ni 
�2 

2 z L 

so that hoop force is 
FH 

= RPr
L 

This is shown in Figure 3. Note that it starts out negative as the field outside is greater than

the field inside.


To compute coil voltage we need:

dφ 

v = Ri + N 
dt 

Now, the resistive term Ri is straightforward. Flux consists of two parts: 

Ni 
Φ = µ0A1Hz + µ0A2 

L 
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6.685 Problem 1.2: Hoop force per unit length 
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Figure 3: Net Pressure 

where A1 = πR
i 
2 (Ri is the shell radius) and A2 = π(R2 

− R
i 
2) (Ro is the coil radius). o 

The rate of change of current is ± I0 or zero, depending on time interval and that can be 
Tr 

pieced together in MATLAB. Rate of change of field inside the cylinder is: 

dHz 1 Ni 
= − Hz

dt Ts L 

The result is shown in Figure 4


To get dissipation in the cylinder we can simply find the current in the cylinder:


Ni 
Kθ = − Hz

L 

and then 
K2 

Pd = 2πRiL θ 

σts 

Cylinder current is shown in Figure 5 and resulting dissipation in Figure 6 

Problem 3 We assume here that speed is very close to synchronous, so that: 

2π × 60 
Ω = 

p 

Required torque is simply: 
P 

T = 
Ω 
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Problem 1.2: Coil Voltages 
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Figure 4: Voltage Induced in the Coil 

We established in class that: 

T = 2πR2L = 2 × Vrotor × τ 

where R and L are rotor radius and length, and τ is peripheral shear stress. If length is twice 
diameter, 

Vrotor = 4πR3 

I have written a simple script that carries out these calculations (appended) and here is the 
result (I have removed a bunch of blank lines) 

Om = 376.9911 188.4956 125.6637

T = 1.0e+03 * 2.6526 5.3052 7.9577

Vol = 0.0133 0.0265 0.0398

D = 0.2036 0.2566 0.2937

L = 0.4073 0.5131 0.5874
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6.685 Problem 1.2: Shell Current 
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Figure 5: Azumuthal Current in Conductive Cylinder 

6.685 Problem 1.2: Dissipation 
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Figure 6: Dissipation in Cylinder 
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Matlab Code for Problem 2 

% Massachusetts Institute of Technology

% 6.685, Fall Term, 2005

% Problem set 1, Problem 2 Solution

% Parameters, etc. 

muzero = pi*4e-7; 

sig = 6e7; % conductivity of the cylinder 

ts = .001; % thickness of the cylinder 

Ri = .1; % radius of the cylinder 

Ro = .125; % radius of the coil 

L = 1; % axial extent of the system 

N = 1000; % turns 

I0 = 10; % peak current 

T_r = .01; % rise time 

T_o = .05; % steady current time 

T_f = .03; % end time (kinda arbitrary) 

dw = .002; % coil wire diameter 

% minor side calculations

R_c = N*2*pi*Ro/(sig*(pi/4)*dw^2); % coil resistance

T_s = muzero*sig*ts*Ri/2; % shell time constant


% now build the times

dt = T_r/20; % basic time step

t1 = 0:dt:T_r; % first interval

t2i = dt:dt:T_o; % constant current time

t2 = t2i + T_r; % so we can put things together

t3i = dt:dt:T_r; % downgoing ramp

t2e = t3i + T_o; % extension of interval 2

t3 = t3i + T_r + T_o; % for assembly purposes

t4i = dt:dt:T_f; % not sure how far to carry this...

t4 = t4i + 2*T_r + T_o;

t = [t1 t2 t3 t4]; % complete time line

T_e = 2*T_r+T_o+T_f;


% construct current waveform

i1 = (I0/T_r) .* t1; % first interval

i2 = I0 .* ones(size(t2i)); % constant current interval

i3 = I0 .* (1 - (1/T_r) .* t3i); % downward ramp

i4 = zeros(size(t4));

I = [i1 i2 i3 i4];

H_o = (N/L) .* I;


% now construct magnetic field

H1 = (N*I0/L) .* (t1 ./ T_r - (T_s/T_r) .* (1 - exp(-t1 ./ T_s)));

H2 = (N*I0/L) .* (1 - (T_s/T_r)*(1-exp(-T_r/T_s)) .* exp(-t2i ./ T_s));

H3 = (N*I0/L) .* (1 - (T_s/T_r)*(1-exp(-T_r/T_s)) .* exp(-t2e ./ T_s))...
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);

- (N*I0/L) .* (t3i ./ T_r - (T_s/T_r) .* (1 - exp(-t3i ./ T_s)));

H4 = (N*I0/L) .* (T_s/T_r) * (1 - exp(-T_r/T_s)) * (1 - exp(-(T_o+T_r)/T_s)) .* exp(-t4i ./ T_s

H = [H1 H2 H3 H4];

figure(1)

subplot 211

plot(t, H_o)

title(’6.685 Problem 1.2 Axial Field’)

ylabel(’Outside Shell, A/m’)

subplot 212

plot(t, H)

ylabel(’Inside Shell, A/m’)

xlabel(’Time, s’)


% hoop force is easily computed from the fields:

% this is force per unit length

F_h = (Ri*muzero/2) .* (H .^2 - H_o .^2);

figure(2)

plot(t,F_h)

title(’6.685 Problem 1.2: Hoop force per unit length’)

ylabel(’N/m’)

xlabel(’Time, s’)


% Now to compute voltage

dhz0dt = (N*I0/(L*T_r)) .* [ones(size(t1)) zeros(size(t2)) -ones(size(t3)) zeros(size(t4))];

dhzdt = (1/T_s) .* (H_o - H);

A1 = pi*Ri^2;

A2 = pi*(Ro^2 - Ri^2);

v_i = muzero*N .* (A1 .* dhzdt + A2 .* dhz0dt);

v_r = R_c .* I;

v = v_r + v_i;


figure(3)

subplot 311

plot(t, v_i)

axis([0 T_e -100 100])

title(’Problem 1.2: Coil Voltages’)

ylabel(’Inductive’)

subplot 312

plot(t, v_r)

axis([0 T_e -100 100])

ylabel(’Resistive’)

subplot 313

plot(t, v)

axis([0 T_e -100 100])

ylabel(’Volts’)

xlabel(’Time, s’)


% and, finally current in the shell and then loss
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Kth = H_o - H; % this is current in the shell

P_d = (2*pi*Ri/(sig*ts)) .* Kth .^ 2; % dissipation


figure(4)

plot(t, Kth)

title(’6.685 Problem 1.2: Shell Current’)

ylabel(’A/m’)

xlabel(’Time’)


figure(5)

plot(t, P_d)

title(’6.685 Problem 1.2: Dissipation’)

ylabel(’Watts’)

xlabel(’Time’)


Matlab Code for Problem 3 

% 6.685 Problem Set 1, Problem 3

p = [1 2 3];

Om = 2*pi*60 ./ p

T = 1e6 ./ Om

Vol = T ./ 2e5

R = (Vol ./ (4*pi)) .^ (1/3);

D = 2 .* R

L = 2 .* D
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