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6.685 Electric Machines

Problem Set 1 Solutions September 10, 2005

Problem 1:If we assume, as suggested in the problem statement, that fields outside the coil can
be ignored, magnetic field inside the coil is simply
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and outside the coil magnetic field is zero. On the inner surface of the coil the normal vector
is —17, and
Ho
T = —7H22
so that ’traction’ on the surface is pressure pushing out:
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Hoop force per unit length is just pressure times radius:
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To do this same problem using the principal of virtual work, see that co-energy is just co-
energy per unit volume times volume, or

W = % (%)27&%

Hoop force is the first derivative of co-energy with respect to hoop circumference, which is
C =2nR:
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to get hoop force per unit length, divide by L and we get the same answer.
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Figure 1: Current in coil for Problem 2



Problem 2:I have re-drawn the current waveform to show my notation for time intervals (Fig-
ure 1). If we note H, as magnetic field within the conductive cylinder, current in that cylinder

must be: A SH
Olg 2 z
- =z R2H.) =T
®~ TR, ot (nomRIH.) =T, ot
where t; and R; are shell thickness and radius, respectively. The shell time constant is
T — Hoots R
2
If Ky is azimuthal current in the shell, field inside the shell is:
Ni
HZ = Kg + T
so that SH N
i
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Now we have to patch together a solution. Note that if we note H,g = %, the step response
of our differential equation would be:

HS = He (1- e‘%)

z

Since the ramp which is the current waveform during interval 1 is simply the integral of a
step, and noting that the response of an ODE to the integral of a waveform is the integral of
the response to the waveform itself, the response during the first interval is
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At the end of this interval the field has risen to:

T _Tr
)

During the second time interval the excitation is constant and we have the equivalent of a
step response with an initial condition:

to

Hay = Hay— (Hoo — HY) e 7

where t9 is time from the start of interval 2. With a little bit of manipulation this is found
to be: T )
T,
H,, = H, (1 _Ls (1 - e_T_s) e_T_2s>
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In the third time interval we have an excitation which is the same as the steady state minus
the same ramp as started the problem:
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Writing that out and evaluating at the end of the third time interval, when excitation current
reaches zero,
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and in the fourth time interval the system is homogeneous:
t
Hoy=H®e T

It is relatively easy in MATLAB to build up the waveforms for H, by simply concatenating
the time periods. Shown in Figure 2 are the field inside of the cylinder and outside (which is
o4 Ni

just F4).

6.685 Problem 1.2 Axial Field
10000 T T

8000 - b

6000 - b

4000 b

Outside Shell, A/m

2000 ,

0 | | | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10000

8000

6000

4000

Inside Shell, A/m

2000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time, s

Figure 2: Magnetic Fields

Net pressure on the cylinder is, noting that the normal vector inside is just —i, and outside

-\ 2
Ho 2 Ni
Po=—/|H, - |—
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This is shown in Figure 3. Note that it starts out negative as the field outside is greater than
the field inside.

To compute coil voltage we need:

is .,

so that hoop force is

do
= Ri+ N—L—
v=Ri+ o7

Now, the resistive term Ri is straightforward. Flux consists of two parts:

N3
Q= poA1H, + Moz‘bf



6.685 Problem 1.2: Hoop force per unit length
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Figure 3: Net Pressure

where A; = 7R? (R; is the shell radius) and Ay = 7(R2 — R?) (R, is the coil radius).

The rate of change of current is :t% or zero, depending on time interval and that can be
pieced together in MATLAB. Rate of change of field inside the cylinder is:

dH, 1 /N
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The result is shown in Figure 4

To get dissipation in the cylinder we can simply find the current in the cylinder:

N1
Kg = T _HZ
and then

K2
P, = 27TR,-L—t@
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Cylinder current is shown in Figure 5 and resulting dissipation in Figure 6

Problem 3 We assume here that speed is very close to synchronous, so that:
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Required torque is simply:



Problem 1.2: Coil Voltages
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Figure 4: Voltage Induced in the Coil

We established in class that:
T =21R*’L =2 x Vyotor X T

where R and L are rotor radius and length, and 7 is peripheral shear stress. If length is twice

diameter,
3
Viotor = 47 R

I have written a simple script that carries out these calculations (appended) and here is the
result (I have removed a bunch of blank lines)

Om = 376.9911 188.4956  125.6637

T = 1.0e+03 * 2.6526 5.30562 7.9577
Vol = 0.0133 0.0265 0.0398

D = 0.2036 0.2566 0.2937

L = 0.4073 0.5131 0.5874
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6.685 Problem 1.2: Shell Current
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Figure 5: Azumuthal Current in Conductive Cylinder

6.685 Problem 1.2: Dissipation
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Matlab Code for Problem 2

% Massachusetts Institute of Technology

% 6.685, Fall Term, 2005

% Problem set 1, Problem 2 Solution

% Parameters, etc.

muzero = pix*xde-7;

sig = 6e7; % conductivity of the cylinder

ts = .001; % thickness of the cylinder

Ri = .1; % radius of the cylinder

Ro = .125; % radius of the coil

L = 1; % axial extent of the system

N = 1000; % turns

I0 = 10; % peak current

T.r = .01; % rise time

T_o = .05; % steady current time

T_f = .03; % end time (kinda arbitrary)

dw = .002; % coil wire diameter

% minor side calculations

R_c = Nx2*xpixRo/(sig*(pi/4)*dw~2); % coil resistance

T_s = muzero*sigxts*Ri/2; % shell time constant

% mnow build the times

dt = T_r/20; %» basic time step

tl = 0:dt:T_r; % first interval

t2i = dt:dt:T_o; % constant current time
t2 = t2i + T_r; % so we can put things
t3i = dt:dt:T_r; % downgoing ramp

t2e = t3i + T_o; % extension of interval 2
t3 = t3i + T.r + T_o; %» for assembly purposes
t4i = dt:dt:T_f; % mnot sure how far to
t4d = t4i + 2xT_r + T_o;

t = [t1 t2 t3 t4]; % complete time line

T_e = 2*%T_r+T_o+T_f;

% construct current waveform

il = (I0/T_r) .* +ti1; % first interval

i2 = I0 .* ones(size(t2i)); % constant current interval
i3 = I0 .x (1 - (1/T_r) .* t3i); %» downward ramp

i4 = zeros(size(t4d));

I = [i1 i2 i3 i4];

Ho = /L) .x TI;

% mnow construct magnetic field

H1 = (N*xIO/L) .x (t1 ./ T_r - (T_s/T_r) .* (1 - exp(-til
H2 = (NxIO/L) .* (1 - (T_s/T_r)*(l-exp(-T_r/T_s)) .* exp(-t2i
H3 = (N*IO/L) .*x (1 - (T_s/T_r)*(1l-exp(-T_r/T_s)) .* exp(-t2e

together

carry this...

/o T_s)));
./ T_s));
./ T_s))...



H4 (N*I0/L) .*x (T_s/T_r) * (1 - exp(-T_r/T_s)) * (1
H = [H1 H2 H3 H4];

figure(1)

subplot 211

plot(t, H_o)

title(’°6.685 Problem 1.2 Axial Field’)
ylabel(’Outside Shell, A/m’)

subplot 212

plot(t, H)

ylabel(’Inside Shell, A/m’)
xlabel(’Time, s’)

% hoop force is easily computed from the fields:

% this 1is force per wunit length

F_.h = (Ri*muzero/2) .*x (H .2 -Ho .72);

figure(2)

plot(t,F_h)

title(’6.685 Problem 1.2: Hoop force per wunit length’)
ylabel (°’N/m’)

xlabel(’Time, s’)

% Now to compute voltage

dhz0dt = (N*IO/(L*T_r)) .* [ones(size(tl)) zeros(size(t2))
dhzdt = (1/T_s) .*x (H_o - H);

Al = pix*Ri"~2;

A2 = pix(Ro"2 - Ri“2);

v_i = muzeroxN .* (A1 .* dhzdt + A2 .* dhz0dt);

v.r = R_c .x 1I;

v = v_r + v_i;

figure(3)

subplot 311

plot(t, wv_i)

axis([0 T_e -100 100])
title(’Problem 1.2: Coil Voltages’)
ylabel(’Inductive’)
subplot 312

plot(t, wv_r)

axis([0 T_e -100 100])
ylabel(’Resistive’)
subplot 313

plot(t, W)

axis([0 T_e -100 100])
ylabel(’Volts’)
xlabel(’Time, s’)

% and, finally current in the shell and then loss

(N*IO/L) .* (£3i ./ T_r - (T_s/T_r) .x (1 - exp(-t3i ./ T_s)));

- exp(-(T_o+T_r)/T_s)) .* ex

-ones(size(t3))

zeros (size(t



Kth = H_o - H;
P_.d = (2xpi*Ri/(sig*ts))
figure(4)

plot(t, Kth)

title(’6.685 Problem 1.2:

ylabel (’A/m’)
xlabel(’Time’)

figure(5)
plot(t, P_d)

title(’6.685 Problem 1.2:

ylabel(’Watts’)
xlabel (’Time’)

% this is current in the
. Kth .~ 2; J dissipation

Shell Current’)

Dissipation’)

Matlab Code for Problem 3

% 6.685 Problem Set 1,
p = [1 2 3];

Om = 2xpi*60 ./ p

T = 1e6 ./ Om

Vol = T ./ 2e5

R = (Vol ./ (4xpi))

D = 2 .x R

L = 2 .x D

Problem 3

o (1/3);

shell



