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6.231 DYNAMIC PROGRAMMING
LECTURE 8

LECTURE OUTLINE

Problems with imperfect state info
Reduction to the perfect state info case
Linear quadratic problems

Separation of estimation and control



BASIC PROBLEM WITH IMPERFECT STATE INFO

e Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing x,
receives at each time k an observation of the form

20 = ho(xo,v0), 2x = hi(Tk, ug—1,vk), k>1

e The observation z; belongs to some space Z.

e The random observation disturbance vy is char-
acterized by a probability distribution

Py, (| 2k, - 20, Uk—1, -, U0, WE—1, ..., WO, Vk—1,---,00)

e The initial state xg is also random and charac-
terized by a probability distribution P,,.

e The probability distribution Py, (- | xx,ux) of
wyg 1s given, and it may depend explicitly on xg
and ug but not on wo, ..., Wr_1,v0,...,VE_1.

e The control uj is constrained to a given subset
Uy (this subset does not depend on xj, which is
not assumed known).



INFORMATION VECTOR AND POLICIES

e Denote by I the information vector, i.e., the
information available at time k:

Ik — (ZQ,Zl,...,Zk,UQ,ul,...,uk_l), k > 1,
Io = 2o
e We consider policies m = {puo, pt1,.--, UN—1},

where each function pi maps the information vec-
tor I into a control u; and

,uk(lk) e Uy, for all I, k>0

e We want to find a policy 7 that minimizes

Jr = ,E {gN(wN) -+ 2_: gk (wk,,uk(fk),’wk)}

k=0

subject to the equations
Tr1 = fio(Tr, e (Ti), wi), k>0,

20 = ho(20,v0), 2k = hi(zk, pr—1(Tk-1),vk), k>1



REFORMULATION AS PERFECT INFO PROBLEM

e We have
Ik+1:(Ik,zk+1,uk), kIO,l,...,N—Q, I():Z()

View this as a dynamic system with state I, con-
trol uy, and random disturbance zx1

e We have
P(zr41 | Ik, ur) = P(2k+1 | Iks uk, 20,21, -+ -, 25),
since 2g, 21, . .., 21 are part of the information vec-

tor I. Thus the probability distribution of zgi1
depends explicitly only on the state Ix and control
ur and not on the prior “disturbances” zi,..., 2o

o Write

E{gk(wk,uk,wk)} = E{ E {gk(a:k,uk,wk) | Ikauk}}
Tl W

so the cost per stage of the new system is

gk, ur) = E {ge(@r, e, wi) | In, uk }

LTl W



DP ALGORITHM

e Writing the DP algorithm for the (reformulated)
perfect state info problem and doing the algebra:

Jk(lk):: min [ E {gk(wk,uk,umJ
up €Uk Lag, wi, 2541
+ Jr+1 (T, 2641, Uk) | Ikguk}}
for k=0,1,...,N — 2, and for k = N — 1,

JN—l(IN—l) = min
un—_1€UN_1

ITN—-1,WN -1

[ E {gN (fN—1($N—1,UN—17wN—1))

+ognv—1(zN_1,UN—1,WN—1) | IN—17UN—1}

e The optimal cost J* is given by

J* = g{J()(Z())}



LINEAR-QUADRATIC PROBLEMS

e System: xpi1 = Arxir + Brur + wg

e (Quadratic cost

N—1
E {CU§\7QN37N + Z (2}, Qri + %Rkuk)}

Wi
k=0,1,..., N-—-1 k=0

where Qr, > 0 and R > 0
e (Observations

2 = Crxr + v, k=01,..., N -1

® wp,...,WN_1, V0,...,UN_1 indep. zero mean

e Key fact to show:
— Optimal policy { g, ..., ui_1} is of the form:

(k) = LiE{wk | I}

L. same as for the perfect state info case

— Estimation problem and control problem can
be solved separately



DP ALGORITHM 1

e Last stage N — 1 (supressing index N — 1):

JN-1(In—-1) = min |:E$N—17wN—1{w§V—1Q$N—1
UN_—1

+uly_{Run_1+ (Azn_1+ Bun_1 +wn_1)

- Q(Axn_1+ Bun_1 +wn_1) | IN—1,UN—1}}

e Since F{wny_1 | INn—1} = E{wny_1} = 0, the

minimization involves
min [u?v_l(B/QB + R)un—1
uN_1
+ 2F{xNn_1 | IN—l}/A/QBUN—l]

The minimization yields the optimal pj_4:

un_1 =MN_1U~n-1) =Ly_1E{zn_1 | IN-1}

where

Ly_1=—(B'QB+ R)-1B'QA



DP ALGORITHM II

e Substituting in the DP algorithm
IN-1(IN-1) = E {ZU§V_1KN—1ZCN—1 | IN—l}
TN-1

+ F {(zn-1— FE{zn_1 | IN_l}),

TN-—1

'PN—1(£UN—1 — FE{rNn_1 | IN—1}) | IN—l}
+ Fk {wEV—lQNwN—l}a

WN -1

where the matrices K y_1 and Py_; are given by

Py_1=Ay_QNByn-1(Rn-1+ By_QnBy_1)"1
- By _1QNAN_1,
Kn_1=Ay_{QNAN-1—Pn_1+QnN-1

e Note the structure of Jy_1: in addition to
the quadratic and constant terms, it involves a
quadratic in the estimation error

rn-—1— E{en_1 | In-1}



DP ALGORITHM II1

e DP equation for period N — 2:

JN—2(INn—2) = min { E {aly _2QxNn_2
UN-—-2 TN—_2WN_2,2N—1
+u3v_2RuN_2 +JInv-1(UN=1) | IN—27UN—2}}

= E{$§V_2Q$N—2 | IN—Q}

+ min |:’U/3V_2R'U/N_2
UN—2

—|—E{a;§\,_1KN_1:UN_1 | IN—27UN—2}:|
/
—|—E{(a:N_1 — E{xn_1 | IN—l})
. PN—l(xN—l —E{LUN—l ’ IN—l}) ‘ IN—27U’N—2}

+ EwN—1{w§V—1QNwN—1}

e Key point: We have excluded the next to last
term from the minimization with respect to un_o

e This term turns out to be independent of uny_o



QUALITY OF ESTIMATION LEMMA

e For every k, there is a function M} such that
we have

SUk—E{ZUk ’ Ik} — Mk(x()awOv ey WE—1,00, - .- 7/016)7

independently of the policy being used

e The following simplified version of the lemma
conveys the main idea

e Simplified Lemma: Let r,u, z be random vari-
ables such that r and v are independent, and let
x =1+ u. Then

r— F{r|zut=r—FE{r|z}

e Proof: We have

r—F{r|z,u}=r+u—F{r4+u|zu}
=r+u—FE{r|zu}t—u
=r— F{r| zu}
=r— FE{r| z}



APPLYING THE QUALITY OF EST. LEMMA

e Using the lemma,
rn—1— E{en_1 | IN-1} =&n-1,
where

¢n—1: function of xg,wo, ..., wN_2,v0,...,UN_1

e Since £x_1 is independent of uy_o, the condi-
tional expectation of &, Pn—_1&n—1 satisfies

E{&y_{Pn-1&n—1 | IN—2,un—2}
= F{&y_ 1 Pv-1&n—1 | IN—2}

and is independent of un_s.

e So minimization in the DP algorithm yields

Uy_g = Hy_o(UN-2) = Ln2E{zNn—2 | IN-2}



FINAL RESULT

e Continuing similarly (using also the quality of
estimation lemma))

pp(lk) = Ly E{xy | I},
where L; is the same as for perfect state info:
Ly =—(Rr + B, Kr41Br) 1B, Ky 1Ay,
with K generated from Ky = )y, using
Ky = A, Ky11Ar — P + Qy,
Py, = A, Ki11Br(Ry + B; Ki41Br) "' B K41 Ak
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SEPARATION INTERPRETATION

e The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E{xy | I1}.

(b) An actuator, which multiplies E{xy | Iy} by
the gain matrix L; and applies the control
input Up — LkE{CUk ‘ Ik}

e (Generically the estimate z of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

Ex{lle = 2|2 [ I} = [[=]]* = 2Bz [ I}z + |[2]]?
is E{x | I} (set to zero the derivative with respect

to & of the above quadratic form).

e The estimator portion of the optimal controller
is optimal for the problem of estimating the state
x) assuming the control is not subject to choice.

e The actuator portion is optimal for the control
problem assuming perfect state information.



STEADY STATE/IMPLEMENTATION ASPECTS

e As N — oo, the solution of the Riccati equation
converges to a steady state and L — L.

o If x9, wy, and vy are Gaussian, F{xy | I} is
a linear function of I and is generated by a nice
recursive algorithm, the Kalman filter.

e The Kalman filter involves also a Riccati equa-
tion, so for N — oo, and a stationary system, it
also has a steady-state structure.

e Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

e For nonGaussian uncertainty, computing E{x | Ix }
maybe very difficult, so a suboptimal solution is
typically used.

e Most common suboptimal controller: Replace
E{xy | I} by the estimate produced by the Kalman
filter (act as if xo, wg, and vg are Gaussian).

e It can be shown that this controller is optimal
within the class of controllers that are linear tunc-
tions of Ij.



