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6.231 DYNAMIC PROGRAMMING
LECTURE 7
LECTURE OUTLINE

e Stopping problems
e Scheduling problems
e Other applications



PURE STOPPING PROBLEMS

e T'wo possible controls:

— Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

— Continue [using xg1+1 = fr(Tg, wr) and in-
curring the cost-per-stage]
e FEach policy consists of a partition of the set of
states xx into two regions:
— Stop region, where we stop

— Continue region, where we continue

CONTINUE STOP
REGION REGION




EXAMPLE: ASSET SELLING

e A person has an asset,andatk=0,1,...,N—1
receives a random offer wy

e May accept wi and invest the money at fixed
rate of interest r, or reject wi and wait for wy. 1.
Must accept the last offer wy_1

e DP algorithm (xj: current offer, T: stop state):

x if x T,
In(xn) = {ON " xZiT

Tu(ay) = { max[(T 4 e, B{ i (wo}] it M

e Optimal policy;
accept the offer xy if xp > ay,

reject the offer xy if xp < a,

where

_ B{Jrn(wi)}
k= (1+r)N-Fk



FURTHER ANALYSIS

ACCEPT

1
: REJECT

0 1 2 N-1 N k

e Can show that ar > ar.q for all k£

e Proof: Let Vi(xr) = Jr(xk)/(1+r)N—Fk for
xyr # T. Then the DP algorithm is Vy(zn) = xn
and

Vi(zr) = max |xg, (1 + 7)1 g{VkH(w)}

We have ap = Fuw{Vit1(w)}/(1+r), so it is enough
to show that Vi(x) > Vii1(x) for all x and k.
Start with Vy_1(x) > Vn(x) and use the mono-
tonicity property of DP.

e We can also show that ap — @ as £k — —o0.
Suggests that for an infinite horizon the optimal
policy is stationary.



GENERAL STOPPING PROBLEMS

e At time k, we may stop at cost t(xx) or choose
a control uy € U(zy) and continue

In(zn) = t(zn),

Jk<$/€> :mln[t<x/€)7 min E{g(xkaukawk)
u €U (zy)

+ Jp1 (f(afk,Uk,wk))}}

e Optimal to stop at time k for states x in the
set

Tk:{x

e Since Jy_i1(z) < Jn(z), we have Jp(x) <
Ji+1(x) for all k, so

t(r) < min E{g(:v, u,w) + Jr+1 (f(a:, u, w)) }}

ueU (x)

TQC"'CTkCTk+1C"'CTN_1.

e Interesting case is when all the T} are equal (to
T'n_1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

flx,u,w) € Tny—1, for all x € Tn_1, u € U(x), w.



SCHEDULING PROBLEMS

e Set of tasks to perform, the ordering is subject
to optimal choice.

e (Costs depend on the order

e There may be stochastic uncertainty, and prece-
dence and resource availability constraints

e Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

e Some special problems admit a simple quasi-
analytical solution method
— Optimal policy has an “index form”, i.e.,
each task has an easily calculable “index”,
and it is optimal to select the task that has
the maximum value of index (multi-armed
bandit problems - to be discussed later)

— Some problems can be solved by an “inter-
change argument” (start with some schedule,
interchange two adjacent tasks, and see what
happens)



EXAMPLE: THE QUIZ PROBLEM

e Given a list of V questions. If question 7 is an-
swered correctly (given probability p;), we receive
reward R;; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

e Let ¢ and j be the kth and (k + 1)st questions
in an optimally ordered list
L= (10, s0k—15%,7y0k4+2y---,IN—1)
E {reward of L} = E{reward of {io,...,i5_1}}
+ Dig = Dip_ 4 (piRi +pz'ijj)
+ Dig * -pik_lpz-ij{reward of {ik_|_2, e ,iN—l}}

Consider the list with ¢ and j interchanged

L' = (10, 0k—1,7, b Tk4+2, - - -y IN—1)

Since L is optimal, F{reward of L} > F{reward of L'},
so it follows that p; R; + pip; R; > p;Rj 4+ p;pi R;
or

piRi/(1 —pi) = piR;/(1 = pj).



MINIMAX CONTROL

e Consider basic problem with the difference that
the disturbance w; instead of being random, it is
just known to belong to a given set Wy (g, ur).

e Find policy m that minimizes the cost
Jr(xo) = max [gN(:cN)

wp €W (g 1 ()
k=0.1,...,N—1

N-—-1

D TICHTERRTS]

k=0

e The DP algorithm takes the form

JN(ZL’N> — gN($N>a

J — '
H00) = B 1 Sy (950 0

+ Tt (fio(zr, we, wr) )

(Exercise 1.5 in the text, solution posted on the

WWW).



UNKNOWN-BUT-BOUNDED CONTROL

e For each k, keep the x;, of the controlled system

Tkt1 = [k (xkaﬂk(xk)awk)

inside a given set Xg, the target set at time k.

e This is a minimax control problem, where the
cost at stage k is

o 0 if:UkEXk,
gk(lli'k) o { 1 if X §Z Xk.

e We must reach at time k& the set
Yk = {lek ‘ Jk(xk) = 0}

in order to be able to maintain the state within
the subsequent target sets.

e Start with Xy = Xy, and fork=0,1,..., N —
1

Y

X = {:ck € Xi | there exists up € Ug(xg) such that
fk(xk,uk,wk) -~ Ylﬂ—l; for all Wi € Wk(azk,uk)}



