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6.231 DYNAMIC PROGRAMMING
LECTURE 6
LECTURE OUTLINE

e Examples of stochastic DP problems
e Linear-quadratic problems

e Inventory control



LINEAR-QUADRATIC PROBLEMS

e System: xpi1 = Arxir + Brur + wg

e (Quadratic cost

N—1
E {%VQNZCN + Z (27, Qrr) + ULRkuk)}
N—1

Wi
k=0,1,..., k=0

where Qr > 0 and Ry > 0 (in the positive (semi)definite
sense).
e w; are independent and zero mean

e DP algorithm:
Jn(zn) = 2y@nNTN,

Ji(rr) = min E{xﬁf@kxk + up Rpuy,
Up

+ Jyt1(Arzr + Brug + wy) }
e Key facts:
— Jr(xk) is quadratic
— Optimal policy {ug, .., wy_1} is linear:
py(wr) = Ly,

— Similar treatment of a number of variants



DERIVATION

e By induction verify that
pi(xr) = Ly, Ji(xr) = o), Kjx), + constant,
where L are matrices given by

Ly = — (B, Ky+1Br + Ri) 1B} K1 A,

and where K are symmetric positive semidefinite
matrices given by

Ky =Qn,

Ky = A, (Kit1 — Ki1Br (B, Kp11Bx
+ Ry)"'B} Kj41) Ak + Q.
e This is called the discrete-time Riccati equation.

e Just like DP, it starts at the terminal time N
and proceeds backwards.

e Certainty equivalence holds (optimal policy is

the same as when w; is replaced by its expected
value E{w} = 0).



ASYMPTOTIC BEHAVIOR OF RICCATI EQUATION

e Assume time-independent system and cost per

stage, and some technical assumptions: controla-
bility of (A, B) and observability of (A, C') where
Q=C07C

e The Riccati equation converges limy_. o, Ki =
K, where K is pos. definite, and is the unique
(within the class of pos. semidefinite matrices) so-
lution of the algebraic Riccati equation

K = A'(K — KB(B'KB+ R)~'B'K)A +Q

e The corresponding steady-state controller p*(z) =
Lx, where

L=—(B'KB+ R)"1B'KA,

is stable in the sense that the matrix (A + BL) of
the closed-loop system

Tht1 = (A —+ BL):Uk + W

satisfies limy (A + BL)F = 0.



GRAPHICAL PROOF FOR SCALAR SYSTEMS
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e Riccati equation (with P, = Kn_):

B2P?
Py = A2 P, — K
S ( “ T B2P + R) e

or Pyy1 = F(Py), where

~ A2RP N
- B2P+ R

F(P) Q.

e Note the two steady-state solutions, satistying
P = F(P), of which only one is positive.



RANDOM SYSTEM MATRICES

) Suppose that {AQ, BQ}, e ooy {AN—h BN—l} are
not known but rather are independent random
matrices that are also independent of the wy

e DP algorithm is
In(zn) = 2yQNTN,
Ji(rg) =min F {x;Qkxk

U wy,Ap,Bg

+ up Riug + Jot1 (Apze + Brug + w’“)}

e Optimal policy u}(zr) = Lrzk, where

—1
Ly = —(Rx + E{B| Ky41Br}) E{B|Kr1Ax},

and where the matrices Ky are given by
Ky =Qn,
Ky = E{A, K41 A} — E{A, K418}
(R + E{BéKlH—lBk})_1E{B;€Kk+114k} + Q%



PROPERTIES

e Certainty equivalence may not hold

e Riccati equation may not converge to a steady-

state A

F(P)

\
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e We have Py 1 = F(Py), where

_ B{A?}RP TP?
PP =geprr "9 T BB P 1

T = E{A?}E{B?} — (E{A})"(E{B})’



INVENTORY CONTROL

e 1. stock, ug: inventory purchased, wg: de-
mand

Tht1 = Tk + UL — Wk, k=0,1,...,N —1

e Minimize

E { 2_: (cuk + r(xk + uk — fwk))}

k=0

where, for some p > 0 and h > 0,

r(x) = pmax(0, —x) + h max (0, )

e DP algorithm:

JN(QUN) = 0,

Ji(zr) = 1r1r11>1r10 [Cuk—l—H(wk—l—uk)—l—E{Jk_H(ZEk‘I‘Uk_'wk)}]7
’I,Lk_

where H(x + u) = E{r(z +u —w)}.



OPTIMAL POLICY

e DP algorithm can be written as

JN(ZIZ'N) = O,

Ji(zr) = min Gg(xr + ug) — cxi,
up >0

where

Gr(y) = cy + H(y) + E{Jr11(y —w)}.

o If G} is convex and lim|;_,o Gr(r) — 00, We
have

*( )_ S —xp  if xp < Sk,
Hie\ k) = 0 if xp > S,

where S; minimizes Gg(y).

e This is shown, assuming that ¢ < p, by showing
that Ji is convex for all k, and

lim Jg(x) — o0

|z[—o00



JUSTIFICATION

Graphical inductive proof that Ji is convex.
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