
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Label correcting methods for shortest paths
• Variants of label correcting methods
• Branch-and-bound as a shortest path algorithm

LABEL CORRECTING METHODS

• Origin s, destination t, lengths aij that are ≥ 0

• di (label of i): Length of the shortest path
found thus far (initially di = except ds = 0).
The label di is implicitly associated

∞
with an s → i

path
• UPPER: Label dt of the destination
• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj ?
(Is the path s --> i --> j
better than the
current path s --> j ?)

Is di + aij < UPPER ?
(Does the path s --> i --> j
have a chance to be part
of a shorter s --> t path ?)

YES

YES

INSERT

O P E N

Set dj = di + aij

VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path
from the origin to the destination, the label cor-
recting algorithm terminates with UPPER equal
to the shortest distance from the origin to the des-
tination

Proof: (1) Each time a node j enters OPEN, its
label is decreased and becomes equal to the length
of some path from s to j

(2) The number of possible distinct path lengths
is finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and
let d∗ be the shortest distance. If UPPER > d∗

at termination, UPPER will also be larger than
the length of all the paths (s, j1, . . . , jm), m =
1, . . . , k, throughout the algorithm. Hence, node
jk will never enter the OPEN list with djk equal
to the shortest distance from s to jk. Similarly
node jk−1 will never enter the OPEN list with
djk−1 equal to the shortest distance from s to jk−1.
Continue to j1 to get a contradiction

MAKING THE METHOD EFFICIENT

• Reduce the value of UPPER as quickly as pos-
sible

− Try to discover “good” s → t paths early in
the course of the algorithm

• Keep the number of reentries into OPEN low
− Try to remove from OPEN nodes with small

label first.
− Heuristic rationale: if di is small, then dj

when set to di+aij will be accordingly small,
so reentrance of j in the OPEN list is less
likely

• Reduce the overhead for selecting the node to
be removed from OPEN

• These objectives are often in conflict. They give
rise to a large variety of distinct implementations

• Good practical strategies try to strike a compro-
mise between low overhead and small label node
selection

NODE SELECTION METHODS

• Depth-first search: Remove from the top of
OPEN and insert at the top of OPEN.

− Has low memory storage properties (OPEN
is not too long). Reduces UPPER quickly.

Origin Node s

Destination Node t

1 4

2

3

4 5

6

7 8 9

1 0

1 3

1 1 1 2

1

• Best-first search (Djikstra): Remove from
OPEN a node with minimum value of label.

− Interesting property: Each node will be in-
serted in OPEN at most once.

− Nodes enter OPEN at minimum distance
− Many implementations/approximations

ADVANCED INITIALIZATION

• Instead of starting from di = ∞ for all i %= s,
start with

di = length of some path from s to i (or di = ∞)

OPEN = {i %= t | di < ∞}

• Motivation: Get a small starting value of UP-
PER.

• No node with shortest distance ≥ initial value
of UPPER will enter OPEN

• Good practical idea:
− Run a heuristic (or use common sense) to

get a “good” starting path P from s to t

− Use as UPPER the length of P , and as di

the path distances of all nodes i along P

• Very useful also in reoptimization, where we
solve the same problem with slightly different data

VARIANTS OF LABEL CORRECTING METHODS

• If a lower bound hj of the true shortest dis-
tance from j to t is known, use the test

di + aij + hj < UPPER

for entry into OPEN, instead of

di + aij < UPPER

The label correcting method with lower bounds as
above is often referred to as the A∗ method.

• If an upper bound mj of the true shortest
distance from j to t is known, then if dj + mj <
UPPER, reduce UPPER to dj + mj .

• Important use: Branch-and-bound algorithm
for discrete optimization can be viewed as an im-
plementation of this last variant.

BRANCH-AND-BOUND METHOD

• Problem: Minimize f(x) over a finite set of
feasible solutions X.

• Idea of branch-and-bound: Partition the fea-
sible set into smaller subsets, and then calculate
certain bounds on the attainable cost within some
of the subsets to eliminate from further consider-
ation other subsets.

Bounding Principle

Given two subsets Y1 ⊂ X and Y2 ⊂ X, suppose
that we have bounds

f
1
≤ min

x∈Y1
f(x), f2 ≥ min

x∈Y2
f(x).

Then, if f2 ≤ f
1
, the solutions in Y1 may be dis-

regarded since their cost cannot be smaller than
the cost of the best solution in Y2.

• The B+B algorithm can be viewed as a la-
bel correcting algorithm, where lower bounds de-
fine the arc costs, and upper bounds are used to
strengthen the test for admission to OPEN.

SHORTEST PATH IMPLEMENTATION

• Acyclic graph/partition of X into subsets (typ-
ically a tree). The leafs consist of single solutions.

• Upper/Lower bounds f
Y

and fY for the mini-
mum cost over each subset Y can be calculated.

• The lower bound of a leaf {x} is f(x)

• Each arc (Y,Z) has length f
Z
− f

Y

• Shortest distance from X to Y = f
Y
− f

X

• Distance from origin X to a leaf {x} is f(x)−f
X

• Shortest path from X to the set of leafs gives
the optimal cost and optimal solution

• UPPER is the smallest f(x) − f
X

out of leaf
nodes {x} examined so far

{1,2,3,4,5}

{1,2,}

{4,5}{1,2,3}

{1} {2}

{3} {4} {5}

BRANCH-AND-BOUND ALGORITHM

Step 1: Remove a node Y from OPEN. For each
child Yj of Y , do the following:

− Entry Test: If f
Y j

< UPPER, place Yj in
OPEN.

− Update UPPER: If fY j < UPPER, set UP-
PER = fY j , and if Yj consists of a single
solution, mark that as being the best solu-
tion found so far

Step 2: (Termination Test) If OPEN: empty,
terminate; the best solution found so far is opti-
mal. Else go to Step 1

• It is neither practical nor necessary to generate
a priori the acyclic graph (generate it as you go)

• Keys to branch-and-bound:
− Generate as sharp as possible upper and lower

bounds at each node
− Have a good partitioning and node selection

strategy

• Method involves a lot of art, may be prohibitively
time-consuming ... but guaranteed to find an op-
timal solution

