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6.231 DYNAMIC PROGRAMMING


LECTURE 25


LECTURE OUTLINE


• Additional topics in ADP 

• Nonlinear versions of the projected equation


• Extension of Q-learning for optimal stopping


• Basis function adaptation 

• Gradient-based approximation in policy space




� � 

NONLINEAR EXTENSIONS OF PROJECTED EQ.


• If the mapping T is nonlinear (as for exam­
ple in the case of multiple policies) the projected 
equation Φr = ΠT (Φr) is also nonlinear. 

• Any solution r ∗ satisfies 

r ∗ ∈ arg min �
� 
Φr − T (Φr ∗)�

�2 

r∈�s 

or equivalently 

Φ′ Φr ∗ − T (Φr ∗) = 0  

This is a nonlinear equation, which may have one 
or many solutions, or no solution at all. 

• If ΠT is a contraction, then there is a unique 
solution that can be obtained (in principle) by the 
fixed point iteration 

Φrk+1 = ΠT (Φrk) 

• We have seen a nonlinear special case of pro­
jected value iteration/LSPE where ΠT is a con­
traction, namely optimal stopping. 

• This case can be generalized. 



�	 � 

�	 � � 

LSPE FOR OPTIMAL STOPPING EXTENDED


•	 Consider a system of the form


x = T (x) =  Af(x) +  b,


n → �nwhere f : � � is a mapping with scalar com­

ponents of the form f(x) =  f1(x1), . . . , fn(xn) . 

• Assume that each fi : � → �� is nonexpansive: 

�fi(xi) − fi(x̄i) ≤ |xi − x̄i|, ∀ i, xi, x̄i ∈ �  

This guarantees that T is a contraction with re­
spect to any weighted Euclidean norm ‖·‖ξ when­
ever A is a contraction with respect to that norm. 

• Algorithms similar to LSPE [approximating 
Φrk+1 = ΠT (Φrk)] are then possible. 

• Special case: In the optimal stopping problem 
of Section 6.4, x is the Q-factor corresponding to 
the continuation action, α ∈ (0, 1) is a discount 
factor, fi(xi) = min{ci, xi}, and  A = αP , where  
P is the transition matrix for continuing. 

• If 
�

j
n 
=1 pij < 1 for some state i, and  0  ≤ P ≤ 

Q, where  Q is an irreducible transition matrix, 
then Π((1−γ)I+γT ) is a contraction with respect 
to ‖ · ‖ξ for all γ ∈ (0, 1), even with α = 1.  



� � 

� � � � 

� � 

BASIS FUNCTION ADAPTATION I


• An important issue in ADP is how to select 
basis functions. 

• A possible approach is to introduce basis func­
tions that are parametrized by a vector θ, and  
optimize over θ, i.e., solve the problem 

min F J̃(θ)

θ∈Θ 

where J̃(θ) is the solution of the projected equa­
tion. 

• One example is 

F 
� 
J̃(θ) = �J̃(θ) − T 

� 
J̃(θ) � 2 

• Another example is 

F 
� 
J̃(θ) = |J(i) − J̃(θ)(i)|2 , 

i∈I 

where I is a subset of states, and J(i), i ∈ I,  are 
the costs of the policy at these states calculated 
directly by simulation. 



� 

BASIS FUNCTIO   
N ADAPTATION II

• Some algorithm may be used to minimize F 
� 
J̃(θ) 

over θ. 

• A challenge here is that the algorithm should 
use low-dimensional calculations. 

• One possibility is to use a form of random search 
method; see the paper by Menache, Mannor, and 
Shimkin (Annals of Oper. Res., Vol. 134, 2005) 

• Another possibility is to use a gradient method. 
For this it is necessary to estimate the partial 
derivatives of J̃(θ) with respect to the components 
of θ. 

• It turns out that by differentiating the pro­
jected equation, these partial derivatives can be 
calculated using low-dimensional operations. See 
the paper by Menache, Mannor, and Shimkin, and 
a recent paper by Yu and Bertsekas (2008). 



APPROXIMATION IN POLICY SPACE I 

• Consider an average cost problem, where the 
problem data are parametrized by a vector r, i.e., 
a cost vector g(r), transition probability matrix 
P (r). Let η(r) be the (scalar) average cost per 
stage, satisfying Bellman’s equation 

η(r)e + h(r) =  g(r) +  P (r)h(r) 

where h(r) is the corresponding differential cost 
vector. 
• Consider minimizing η(r) over  r (here the data 
dependence on control is encoded in the parametriza­
tion). We can try to solve the problem by nonlin­
ear programming/gradient descent methods. 

• Important fact: If ∆η is the change in η due 
to a small change ∆r from a given r, we have  

∆η = ξ′(∆g + ∆Ph), 
where ξ is the steady-state probability distribu­
tion/vector corresponding to P (r), and all the quan­
tities above are evaluated at r: 

∆η = η(r + ∆r) − η(r), 

∆g = g(r+∆r)−g(r), ∆P = P (r+∆r)−P (r)




� � 

APPROXIMATION IN POLICY SPACE II


• Proof of the gradient formula: We have, 
by “differentiating” Bellman’s equation, 

∆η(r)·e+∆h(r) = ∆g(r)+∆P (r)h(r)+P (r)∆h(r)


By left-multiplying with ξ′, 

ξ�∆η(r)·e+ξ�∆h(r) =  ξ� ∆g(r)+∆P (r)h(r) +ξ�P (r)∆h(r) 

Since ξ′∆η(r) · e = ∆η(r) and  ξ′ = ξ′P (r), this 
equation simplifies to 

∆η = ξ′(∆g + ∆Ph) 

• Since we don’t know ξ, we cannot implement a 
gradient-like method for minimizing η(r). An al­
ternative is to use “sampled gradients”, i.e., gener­
ate a simulation trajectory (i0, i1, . . .), and change 
r once in a while, in the direction of a simulation-
based estimate of ξ′(∆g + ∆Ph). 

• There is much recent research on this subject, 
see e.g., the work of Marbach and Tsitsiklis, and 
Konda and Tsitsiklis, and the refs given there. 


