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6.231 DYNAMIC PROGRAMMING
LECTURE 25
LECTURE OUTLINE

Additional topics in ADP
Nonlinear versions of the projected equation
Extension of ()-learning for optimal stopping
Basis function adaptation

Gradient-based approximation in policy space



NONLINEAR EXTENSIONS OF PROJECTED EQ.

e If the mapping T is nonlinear (as for exam-
ple in the case of multiple policies) the projected
equation ®r = IIT(Pr) is also nonlinear.

e Any solution r* satisfies

I

Or — T'(Pr*)

r* € arg min
reRs

or equivalently
O/ (Pr* — T (Pr*)) =0
This is a nonlinear equation, which may have one

or many solutions, or no solution at all.

e If IIT" is a contraction, then there is a unique
solution that can be obtained (in principle) by the
fixed point iteration

(I)Tk_H — HT((I)Tk)

e We have seen a nonlinear special case of pro-
jected value iteration/LSPE where IIT is a con-
traction, namely optimal stopping.

e This case can be generalized.



LSPE FOR OPTIMAL STOPPING EXTENDED

e C(Consider a system of the form
x=T(x)=Af(z) +0,

where f : R? — R" is a mapping with scalar com-
ponents of the form f(z) = (fi(z1),..., fu(zn)).

e Assume that each f; : R — R is nonexpansive:

| fi(wi) — fi(z)| < |z — T, Vi, 2, T €R

This guarantees that 71" is a contraction with re-
spect to any weighted Euclidean norm ||-||¢ when-
ever A is a contraction with respect to that norm.

e Algorithms similar to LSPE [approximating
Orpy1 = T (Pry)| are then possible.

e Special case: In the optimal stopping problem
of Section 6.4, x is the ()-factor corresponding to
the continuation action, o € (0,1) is a discount
factor, fi(x;) = min{c;,x;}, and A = aP, where
P is the transition matrix for continuing.

o If Z?Zl p;; < 1 for some state 7, and 0 < P <
(), where () is an irreducible transition matrix,
then II((1—~)I+~T) is a contraction with respect
to || - ||¢ for all v € (0,1), even with a = 1.



BASIS FUNCTION ADAPTATION 1

e An important issue in ADP is how to select
basis functions.

e A possible approach is to introduce basis func-
tions that are parametrized by a vector 6, and
optimize over 6, i.e., solve the problem

r@réig F(J(0))

where J(#) is the solution of the projected equa-
tion.

e One example is

e Another example is
F(J0)) = 2_17() = JO)()P,

where [ is a subset of states, and J(i), ¢ € I, are
the costs of the policy at these states calculated
directly by simulation.



BASIS FUNCTION ADAPTATION II

e Some algorithm may be used to minimize F (j (0))
over 0.

e A challenge here is that the algorithm should
use low-dimensional calculations.

e One possibility is to use a form of random search
method; see the paper by Menache, Mannor, and
Shimkin (Annals of Oper. Res., Vol. 134, 2005)

e Another possibility is to use a gradient method.
For this it is necessary to estimate the partial
derivatives of J(6#) with respect to the components

of 6.

e It turns out that by differentiating the pro-
jected equation, these partial derivatives can be
calculated using low-dimensional operations. See
the paper by Menache, Mannor, and Shimkin, and
a recent paper by Yu and Bertsekas (2008).



APPROXIMATION IN POLICY SPACE 1

e C(Consider an average cost problem, where the
problem data are parametrized by a vector r, i.e.,
a cost vector g(r), transition probability matrix
P(r). Let n(r) be the (scalar) average cost per
stage, satisfying Bellman’s equation

n(r)e+ h(r) = g(r) + P(r)h(r)

where h(r) is the corresponding differential cost

vector.
e Consider minimizing n(r) over r (here the data

dependence on control is encoded in the parametriza-
tion). We can try to solve the problem by nonlin-
ear programming/gradient descent methods.

e Important fact: If An is the change in 1 due
to a small change Ar from a given r, we have

An = ¢ (Ag+ APh),
where ¢ is the steady-state probability distribu-
tion /vector corresponding to P(r), and all the quan-
tities above are evaluated at r:

An = n(r+ Ar) —n(r),

Ag = g(r+Ar)—g(r), AP = P(r+Ar)—P(r)



APPROXIMATION IN POLICY SPACE 11

e Proof of the gradient formula: We have,
by “differentiating” Bellman’s equation,

An(r)-e+Ah(r) = Ag(r)+AP(r)h(r)+P(r)Ah(r)
By left-multiplying with &/,
¢ An(r)-e+& Ah(r) = & (Ag(r)+AP(r)h(r)) +& P (r) Ah(r)

Since &’An(r) -e = An(r) and & = &' P(r), this

equation simplifies to

An = ¢ (Ag + APh)

e Since we don’t know &, we cannot implement a
gradient-like method for minimizing 7(r). An al-
ternative is to use “sampled gradients”, i.e., gener-
ate a simulation trajectory (ig, 1, ...), and change
r once in a while, in the direction of a simulation-
based estimate of £/(Ag + APh).

e There is much recent research on this subject,
see e.g., the work of Marbach and T'sitsiklis, and
Konda and Tsitsiklis, and the refs given there.



