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6.231 DYNAMIC PROGRAMMING


LECTURE 24


LECTURE OUTLINE


• More on projected equation methods/policy 
evaluation 

• Stochastic shortest path problems 

• Average cost problems 

• Generalization - Two Markov Chain methods


• LSTD-like methods - Use to enhance explo­
ration 



REVIEW: PROJECTED BELLMAN EQUATION


• For fixed policy µ to be evaluated, the solution 
of Bellman’s equation J = TJ  is approximated by 
the solution of 

Φr = ΠT (Φr) 

whose solution is in turn obtained using a simulation-

based method such as LSPE(λ), LSTD(λ), or TD(λ).


T(Φr) 

Projection 
on S 

Φr = ΠT(Φr) 

0 
S: Subspace spanned by basis functions 

Indirect method: Solving a projected 
form of Bellmanʼs equation 

• These ideas apply to other (linear) Bellman 
equations, e.g., for SSP and average cost. 

• Key Issue: Construct framework where ΠT [or 
at least ΠT (λ)] is a contraction. 
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STOCHASTIC SHORTEST PATHS


• Introduce approximation subspace 

S = {Φr | r ∈ �s} 

and for a given proper policy, Bellman’s equation 
and its projected version 

J = TJ  = g + PJ,  Φr = ΠT (Φr)


Also its λ-version 
∞ 

Φr = ΠT (λ)(Φr), T (λ) = (1  − λ) λtT t+1 

t=0 

• Question: What should be the norm of pro­
jection? 

• Speculation based on discounted case: It 
should be a weighted Euclidean norm with weight 
vector ξ = (ξ1, . . . , ξn), where ξi should be some 
type of long-term occupancy probability of state i 
(which can be generated by simulation). 

• But what does “long-term occupancy probabil­
ity of a state” mean in the SSP context? 

• How do we generate infinite length trajectories 
given that termination occurs with prob. 1? 
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SIMULATION TRAJECTORIES FOR SSP


• We envision simulation of trajectories up to 
termination, followed by restart at state i with 
some fixed probabilities q0(i) > 0. 

• Then the “long-term occupancy probability of 
a state” of i is proportional to 

∞ 

q(i) =  qt(i), i = 1, . . . , n,  
t=0 

where 

qt(i) =  P (it = i), i = 1, . . . , n,  t = 0, 1, . . .  

• We use the projection norm 

n 

‖J‖q = 
√ 

q(i) 
( 
J(i) 

)2 

i=1 

[Note that 0 < q(i) < ∞, but q is not a prob. 
distribution. ] 

• We can show that ΠT (λ) is a contraction with 
respect to ‖ · ‖ξ (see the next slide). 
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CONTRACTION PROPERTY FOR SSP


∑∞ • We have q = t=0 qt so 
∞ ∞ 

q′P = qt
′ P = qt 

′ = q′ − q0 
′ 

t=0 t=1 
or 

n 

q(i)pij = q(j) − q0(j), ∀ j 
i=1 

• To verify that ΠT is a contraction, we show 
that there exists β <  1 such that ‖Pz‖2 

q ≤ β‖z‖2 
q 

nfor all z ∈ � . 

• For all z ∈ �n, we have  

 2 
n n n n ‖Pz‖2 

q = q(i)  pij zj ≤ q(i) pij zj 
2 

i=1 j=1 i=1 j=1 

n n n 

= zj 
2 q(i)pij = q(j) − q0(j) zj 

2 

j=1 i=1 j=1 

= ‖z‖q 
2 − ‖z‖q

2 
0 ≤ β‖z‖q 

2 

where 
q0(j)

β = 1  − min 
j q(j) 
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PVI(λ) AND  LSPE(λ) FOR SSP 

• We consider PVI(λ): Φrk+1 = ΠT (λ)(Φrk),

which can be written as


n 

rk+1 = arg  min  q(i) φ(i)′r − φ(i)′rk 
r∈�s 

i=1 

∞ 
)2 

− λtE dk(it, it+1) | i0 = i 
t=0 

where dk(it, it+1) are  the TDs.  

• The LSPE(λ) algorithm is a simulation-based 
approximation. Let (i0,l, i1,l, . . . , iNl,l) be the  lth 
trajectory (with iNl,l = 0),  and  let  rk be the pa­
rameter vector after k trajectories. We set 

k+1 Nl−1 

rk+1 = arg  min  φ(it,l)′r − φ(it,l)′rk 
r 

l=1 t=0 

Nl−1 
)2 ∑ 

− λm−tdk(im,l, im+1,l) 
m=t 

where 

dk(im,l, im+1,l) =  g(im,l, im+1,l)+φ(im+1,l)′rk−φ(im,l)′rk 

• Can also update rk at every transition. 
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AVERAGE COST PROBLEMS


• Consider a single policy to be evaluated, with 
single recurrent class, no transient states, and steady-
state probability vector ξ = (ξ1, . . . , ξn). 

• The average cost, denoted by η, is independent 
of the initial state 

1 
N−1 ( ) ∣∣ 

η = lim E g xk, xk+1 ∣ x0 = i , ∀ i 
N→∞ N 

k=0 

• Bellman’s equation is J = FJ  with 

FJ  = g − ηe + PJ  

where e is the unit vector e = (1, . . . , 1). 

• The projected equation and its λ-version are 

Φr = ΠF (Φr), Φr = ΠF (λ)(Φr) 

• A problem here is that F is not a contraction 
with respect to any norm (since e = Pe). 

• However, ΠF (λ) turns out to be a contraction 
with respect to ‖ · ‖ξ assuming that e does not be­
long to S and λ > 0 [the case  λ = 0 is exceptional, 
but can be handled - see the text]. 
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LSPE(λ) FOR AVERAGE COST 

• We generate an infinitely long trajectory (i0, i1, . . .). 

• We estimate the average cost η separately: Fol­
lowing each transition (ik, ik+1), we set 

1 
k 

ηk = g(it, it+1)
k + 1  

t=0 

• Also following (ik, ik+1), we update rk by 

( )2k k 

rk+1 = arg  min  φ(it)′r − φ(it)′rk − λm−tdk(m) 
r∈�s 

t=0 m=t 

where dk(m) are  the TDs  

dk(m) =  g(im, im+1)−ηm +φ(im+1)′rk −φ(im)′rk 

• Note that the TDs include the estimate ηm.

Since ηm converges to η, for  large  m it can be

viewed as a constant and lumped into the one-

stage cost.




GENERALIZATION/UNIFICATION


• Consider approximate solution of x = T (x), 
where 

nT (x) =  Ax + b, A is n × n, b ∈ � 


by solving the projected equation y = ΠT (y), 
where Π is projection on a subspace of basis func­
tions (with respect to some Euclidean norm). 

• We will generalize from DP to the case where 
A is arbitrary, subject only to 

I − ΠA : invertible 


•	 Benefits of generalization: 
− Unification/higher perspective for TD meth­

ods in approximate DP 

− An extension to a broad new area of applica­
tions, where a DP perspective may be help­
ful 

•	 Challenge: Dealing with less structure 

− Lack of contraction 

− Absence of a Markov chain 
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LSTD-LIKE METHOD


• Let Π be projection with respect to 

n 

‖x‖ξ = √ ξixi 
2 

i=1 

nwhere ξ ∈ � is a probability distribution with 
positive components. 

• If r ∗ is the solution of the projected equation, 
we have Φr ∗ = Π(AΦr ∗ + b) or   2 

n n r ∗ = arg  min  ξi φ(i)′r − aij φ(j)′r ∗ − bi 
r∈�s 

i=1 j=1 

where φ(i)′ denotes the ith row of the matrix Φ. 

• Optimality condition/equivalent form: 

 ′ 
n n n ξiφ(i) φ(i) − aij φ(j) r ∗ = ξiφ(i)bi 

i=1 j=1 i=1 

• The two expected values are approximated by 
simulation. 



Row Sampling According to ξ

i0 i1

j0 j1

ik ik+1

jk jk+1

. . . . . .

Column Sampling

{ } 

SIMULATION MECHANISM


According to P 

• Row sampling: Generate sequence {i0, i1, . . .}
according to ξ, i.e., relative frequency of each row 
i is ξi 

• Column sampling: Generate (i0, j0), (i1, j1), . . .  
according to some transition probability matrix P 
with 

pij > 0  if  aij �= 0, 

i.e., for each i, the relative frequency of (i, j) is  pij 

• Row sampling may be done using a Markov

chain with transition matrix Q (unrelated to P )


• Row sampling may  also  be done without  a 
Markov chain - just sample rows according to some 
known distribution ξ (e.g., a uniform) 



| |

Row Sampling According to ξ

(May Use Markov Chain Q)

Column Sampling
According to
Markov Chain

P A

i0 i1

j0 j1

ik ik+1

jk jk+1

. . .

∼ |  | 

ROW AND COLUMN SAMPLING


. . .  

• Row sampling ∼ State Sequence Generation in 
DP. Affects: 

− The projection norm.

− Whether ΠA is a contraction.


• Column sampling ∼ Transition Sequence Gen­
eration in DP. 

−	 Can be totally unrelated to row sampling. 
Affects the sampling/simulation error. 

−	 “Matching” P with |A| is beneficial (has an 
effect like in importance sampling). 

• Independent row and column sampling allows

exploration at will! Resolves the exploration prob­

lem that is critical in approximate policy iteration.
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LSTD-LIKE METHOD


• Optimality condition/equivalent form of pro­
jected equation  ′ 

n n n 

ξiφ(i) φ(i) − aij φ(j) r ∗ = ξiφ(i)bi 

i=1 j=1 i=1 

• The two expected values are approximated by 
row and column sampling (batch 0 → t). 

• We solve the linear equation 

t ( )′ t 

φ(ik) φ(ik) − 
aikjk φ(jk) rt = φ(ik)bik pik jkk=0 k=0 

• We have rt → r ∗ , regardless of ΠA being a con­
traction (by law of large numbers; see next slide). 

• An LSPE-like method is also possible, but re­
quires that ΠA is a contraction. 

• Under the assumption n |aij | ≤ 1 for all i,j=1 
there are conditions that guarantee contraction of 
ΠA; see the paper by Bertsekas and Yu,“Projected 
Equation Methods for Approximate Solution of 
Large Linear Systems,” 2008. 
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JUSTIFICATION W/ LAW OF LARGE NUMBERS


• We will match terms in the exact optimality 
condition and the simulation-based version. 

• Let ξ̂i
t be the relative frequency of i in row 

sampling up to time t. 

• We have 

1 
t 

φ(ik)φ(ik)′ = 
n 

ξ̂i
tφ(i)φ(i)′ ≈ 

n 

ξiφ(i)φ(i)′ 
t + 1  

k=0 i=1 i=1 

1 
t 

φ(ik)bik = 
n 

ξ̂i
tφ(i)bi ≈ 

n 

ξiφ(i)bi 
t + 1  

k=0 i=1 i=1 

• Let p̂ij
t be the relative frequency of (i, j) in  

column sampling up to time t. 

1 
t 

aikjk φ(ik)φ(jk)′

t + 1  pikjk
k=0


n n


= ξ̂i
t p̂t

ij 
aij 

φ(i)φ(j)′ 
pij

i=1 j=1 

n n 

≈ ξi aij φ(i)φ(j)′ 
i=1 j=1 


