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LECTURE OUTLINE

e More on projected equation methods/policy
evaluation

e Stochastic shortest path problems
e Average cost problems
e Generalization - Two Markov Chain methods

e LSTD-like methods - Use to enhance explo-
ration



REVIEW: PROJECTED BELLMAN EQUATION

e For fixed policy i to be evaluated, the solution
of Bellman’s equation J = T'J is approximated by
the solution of

Or = 11T (Pr)

whose solution is in turn obtained using a simulation-
based method such as LSPE(\), LSTD(\), or TD()\).

T(@r)

i
. Projection
! onS

]

dr = I1T(Dr)

0

S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation

e These ideas apply to other (linear) Bellman
equations, e.g., for SSP and average cost.

e Key Issue: Construct framework where IIT [or
at least IIT(M] is a contraction.



STOCHASTIC SHORTEST PATHS

e Introduce approximation subspace
S={Pr|reRs}

and for a given proper policy, Bellman’s equation
and its projected version

J=TJ =g+ PJ, ¢r = T (Pr)

Also its \-version

Or = IITN) (Pr), T =(1-)\) Z ATt
t=0
e Question: What should be the norm of pro-
jection?

e Speculation based on discounted case: It
should be a weighted Euclidean norm with weight
vector & = (&1,...,&), where & should be some
type of long-term occupancy probability of state ¢
(which can be generated by simulation).

e But what does “long-term occupancy probabil-
ity of a state” mean in the SSP context?

e How do we generate infinite length trajectories
given that termination occurs with prob. 17



SIMULATION TRAJECTORIES FOR SSP

e We envision simulation of trajectories up to
termination, followed by restart at state ¢ with
some fixed probabilities go(7) > 0.

e Then the “long-term occupancy probability of
a state” of 7 is proportional to

g(i) =) @), i=1,...,n,
t=0

where
g+ (i) = P(ir = 1), i=1,....n, t=0,1,...

e We use the projection norm

Ml = > a(i) (7))’

[Note that 0 < (i) < oo, but ¢ is not a prob.
distribution. |

e We can show that IIT (M) is a contraction with
respect to || - ||¢ (see the next slide).



CONTRACTION PROPERTY FOR SSP

e We have ¢ =Y .~ gt so

¢P=> qP=) q=q —q
t=0 t=1

or
> a(i)pi; = a() — (i), Vi
e To verify that II1" is a contraction, we show

that there exists 8 < 1 such that ||Pz||3 < 8]z||3
for all z € Rn.

e For all z € R, we have

IPald =3 0 | Xopos | <3 a0 v
—Z Zq :Z (9(5) — 90(4)) 23

= HZHq — 20 < Bll=l3

3

where

_ —min%(‘j)
p=l-m q(7)




PVI()\) AND LSPE()\) FOR SSP

e We consider PVI(A): ®rpq = T (Pry),
which can be written as

T'k+1 = arg min Z q(@) (gb(z)’r _ gb(’i)’frk

reks

_ Z)\tE{dk(it,’itJrl) | i0 = Z})

t=0
where dg(it,7¢++1) are the TDs.

e The LSPE()) algorithm is a simulation-based
approximation. Let (¢0,%14,...,%¢n,,1) be the lth
trajectory (with iy, ; = 0), and let r; be the pa-
rameter vector after k£ trajectories. We set

k+1 N;—1
Teil = argmm E E d(te0)'r — d(ieg) Tk

=1 t=0

N;—1 2
— E ATt d (Smls Tmt1.1)

m=t
where

A (Tmts tm+1.0) = 9(Em.l, tm+1.0)FO(Gmt1,0) Te—O(tm.1) Tk

e Can also update ry at every transition.



AVERAGE COST PROBLEMS

e C(Consider a single policy to be evaluated, with
single recurrent class, no transient states, and steady-
state probability vector & = (&1,...,&n).

e The average cost, denoted by 7, is independent
of the initial state

N-1
1
n = 1\;1—I>noo NE{Z 9(zk, Trt1) ‘ Ty = z}, Ve
k=0

e Bellman’s equation is J = F'J with
FJ=qg—ne+ PJ

where e is the unit vector e = (1,...,1).

e The projected equation and its A-version are

Or = [1F(Pr), Or = IIFN) (Pr)

e A problem here is that F' is not a contraction
with respect to any norm (since e = Pe).

e However, IIF'(M) turns out to be a contraction
with respect to || - ||¢ assuming that e does not be-
long to S and A > 0 [the case A = 0 is exceptional,
but can be handled - see the text].



LSPE()\) FOR AVERAGE COST

e We generate an infinitely long trajectory (ig, i1, .. .).

e We estimate the average cost 1 separately: Fol-
lowing each transition (ig,ix+1), we set

k
E ’Lt, Zt+1

t=0

e Also following (ix,ix+1), we update 7 by

k k 2
Tk+1 = arg min 2 <¢(it)’7“ — @(it)'T — Z Amtdk(m)>

m=t

where dj(m) are the TDs
di (m) — g(ima im+1) —Tim +¢(im+1)/rk - ¢(im)lrk

e Note that the TDs include the estimate n,,.
Since 7, converges to n, for large m it can be
viewed as a constant and lumped into the one-
stage cost.



GENERALIZATION /UNIFICATION

e Consider approximate solution of x = T'(x),
where

T(x) = Az + b, Aisnxn, beRn

by solving the projected equation y = IIT(y),
where II is projection on a subspace of basis func-
tions (with respect to some Fuclidean norm).

e We will generalize from DP to the case where
A is arbitrary, subject only to

I —IIA : invertible

e DBenefits of generalization:

— Unification/higher perspective for TD meth-
ods in approximate DP

— An extension to a broad new area of applica-
tions, where a DP perspective may be help-

ful
e Challenge: Dealing with less structure
— Lack of contraction

— Absence of a Markov chain



LSTD-LIKE METHOD

e Let Il be projection with respect to

n
1=1

where £ € R is a probability distribution with
positive components.

e If r* is the solution of the projected equation,
we have ®r* = [I(APr* 4+ b) or
2

* — 1 . V1 — . VL S

re=argmin 3 & | @) = > aié(j)r — b,
1=1 71=1

where ¢(i)’ denotes the ith row of the matrix ®.

e Optimality condition/equivalent form:

/
n

Zfiéb(’i) $(i) — > _aio(j) | = Zﬁiﬁb(i)bi

j=1

e The two expected values are approximated by
simulation.



SIMULATION MECHANISM

>

Row Sampling According to &

Column Sampling
According to P

e Row sampling: Generate sequence {ig,i1,...}
according to &, i.e., relative frequency of each row
(TS fz
e Column sampling: Generate { (i, jo), (i1, 1), -}
according to some transition probability matrix P
with

pij >0 if ;g #~ 0,

i.e., for each i, the relative frequency of (i, j) is pi;

¢ Row sampling may be done using a Markov
chain with transition matrix @) (unrelated to P)

e Row sampling may also be done without a
Markov chain - just sample rows according to some
known distribution ¢ (e.g., a uniform)



ROW AND COLUMN SAMPLING

>

Row Sampling According to &
(May Use Markov Chain Q)

| Column Sampling

According to

Markov Chain
P~ |A]

e Row sampling ~ State Sequence Generation in
DP. Affects:

— The projection norm.
— Whether IIA is a contraction.

e (Column sampling ~ Transition Sequence Gen-
eration in DP.

— Can be totally unrelated to row sampling.
Affects the sampling/simulation error.

— “Matching” P with |A| is beneficial (has an
effect like in importance sampling).

e Independent row and column sampling allows
exploration at will! Resolves the exploration prob-
lem that is critical in approximate policy iteration.



LSTD-LIKE METHOD

e Optimality condition/equivalent form of pro-
jected equation

/

>0l | 6() =D ayeli) | =Y &olim,

e The two expected values are approximated by
row and column sampling (batch 0 — ).

e We solve the linear equation

t / t
: : Ay, 5 } :
> (i) (9000) — 225000 ) 7o =3 o(iu)b
k=0 Pirii k=0

e We have r; — r*, regardless of IIA being a con-
traction (by law of large numbers; see next slide).

e An LSPE-like method is also possible, but re-
quires that IIA is a contraction.

e Under the assumption » 7, [a;;| < 1 for all 4,
there are conditions that guarantee contraction of
ITA; see the paper by Bertsekas and Yu, “Projected
Equation Methods for Approximate Solution of
Large Linear Systems,” 2008.



JUSTIFICATION W/ LAW OF LARGE NUMBERS

e We will match terms in the exact optimality
condition and the simulation-based version.

o Let éf be the relative frequency of ¢ in row
sampling up to time ¢.

e We have

t% > dlin)oin) =Y &) ~ Y &d(i)d (i)
k=0 i=1 =1

t% N bl = > Ep(ihi = > Eigli)b
i=1 1=1

o Let pj; be the relative frequency of (i,j) in
column sampling up to time t.

!
1 Qi jg

- 5‘? 5‘%0& )
36D aubol)
i=1 j=1

=& (k)P (Jr)’




