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LECTURE OUTLINE

Review of indirect policy evaluation methods
Multistep methods, LSPE()\)

LSTD(\)

(Q-learning

(X-learning with linear function approximation

(Q-learning for optimal stopping problems



REVIEW: PROJECTED BELLMAN EQUATION

e For a fixed policy p to be evaluated, consider
the corresponding mapping 71":

or more compactly,

TJ=g+aPJ

e The solution J,, of Bellman’s equation J =T'J
is approximated by the solution of

¢r = T (Pr)

: Projection
! onS
]

dr = I1T(Dr)

0

S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation



PVI/LSPE

e Key Result: IIT is contraction of modulus
a with respect to the weighted Euclidean norm
| - |le, where & = (&1,...,&) is the steady-state
probability vector. The unique fixed point ®r* of
II'T satisfies

HJM - @r*\\g < HJM - HJuHﬁ

1
V1 —a?
e Projected Value Iteration (PVI): ®ry, 1 =
[IT(®ry), which can be written as

T'k+1 = arg min

min Or — T'(Pry) H§

or equivalently

n n 2
Tkt1 = arg min Z&- (cb(i)’r - qu;j (9(i,9) + acb(j)’rk))
=1

j=1

e LSPE (simulation-based approximation):
We generate an infinite trajectory (ig,%1,...) and
update rj after transition (ix,ix+1)

k

. . . 2
ripr = argmin » (6(ie)'r—g(ir, ie+1) —ad (i) re)
t=0



JUSTIFICATION OF PVI/LSPE CONNECTION

e By writing the necessary optimality conditions
for the least squares minimization, PVI can be
written as

(Z & qb(v:)cb(z')’) Tl = (Z & 0(0) > pij(9(i,5) + acb(j)’rk))
i=1 i=1 j=1

e Similarly, by writing the necessary optimal-
ity conditions for the least squares minimization,
LSPE can be written as

k
(Z ¢(it)¢(it)/> Tkt1 = <Z¢ it) (9 (it, it+1) + a(it41) Tk))
t=0

e S0 LSPE is just PVI with the two expected val-
ues approximated by simulation-based averages.

o Convergence follows by the law of large num-
bers.

e The bottleneck in rate of convergence is the
law of large of numbers/simulation error (PVI is
a contraction with modulus «, and converges fast
relative to simulation).



LEAST SQUARES TEMP. DIFFERENCES (LSTD)

o Taking the limit in PVI, we see that the pro-
jected equation, ®r* = IIT(®r*), can be written as
Ar* +b =0, where

A=3"g o) <a > i) - ¢<7z>>
=1

j=1

h— Z & (i) Zpijg(i,ﬁ
i=1 =1

e A b are expected values that can be approxi-
mated by simulation: A, ~ A, b, ~ b, where

k
1 Z . : Y

b, = k—|—1z¢zt g(it,i¢41)

e LSTD method: Approximates r* as

r* ?A° = —A 1bk

e Conceptually very simple ... but less suitable for
optimistic policy iteration (hard to transfer info
from one policy evaluation to the next).

e Can be shown that convergence rate is the same
for LSPE/LSTD (for large k, ||ry —7#|| << ||lre—7*]|)-



MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J =T J, where for X\ € [0,1),

T = (1 - \) Z At
t=0
e Note that T? is a contraction with modulus «of,
with respect to the weighted Euclidean norm |||,

where ¢ is the steady-state probability vector of
the Markov chain.

e From this it follows that 7 is a contraction
with modulus

a(l —X)
1 —aA

ax=(1-2)) o=
t=0
e Tt and TN have the same fixed point J, and

[Jp — Prile <

1
[T — T
/91— ay
where @r; is the fixed point of 7).
e The fixed point ®r; depends on .

e Note that oy | 0as X\ T 1, so error bound improves
as A1 1.



PVI())

t=0

or

Tk+4+1 — arg min

2
min |7 - T (®ry,) Hg

e Using algebra and the relation

1
(T 1) 6) = E {at+1J(it+1) n Z a* gy, ins1) | io = z}

k=0

we can write PVI()\) as

refRs .

Tk41 = arg min Z & (qﬁ(i)’r — (1) 1y
1=1

2
=) @\ B{di(it,irs1) | io = z'}>
t=0
where
di (it tt41) = g(it, te+1) + ad(it41)'rie — d(it) 7,

are the, so called, temporal differences (TD) - they
are the errors in satisfying Bellman’s equation.



LSPE())

e Replacing the expected values defining PVI())
by simulation-based estimates we obtain LSPE()).

e It has the form

k

Tk41 = arg min g (qb(z’t)”r‘ — qb(it)’rk
reyRs
t=0

k 2
o Z (ak)m_tdk (ima im—l—l))
m=t

where (ig,41,...) is an infinitely long trajectory gen-
erated by simulation.

e Can be implemented with convenient incremen-
tal update formulas (see the text).

e Note the M-tradeoft:

— As X 1 1, the accuracy of the solution @r%
improves - the error bound to ||J, — ®r§|l¢
1Improves.

— As )11, the “simulation noise” in the LSPE())
iteration (2nd summation term) increases, so

longer simulation trajectories are needed for
LSPE()) to approximate well PVI()).



Q-LEARNING 1

e (Q-learning has two motivations:
— Dealing with multiple policies simultaneously
— Using a model-free approach [no need to know
pij (u) explicitly, only to simulate them]

e The @Q-factors are defined by

Q*(ivu) = Y pig(u) (9, u,5) + a* (), ¥ (i,u)

J=1

e In view of J* = TJ*, we have J* (i) = min, ¢y ;) Q* (4, u)
so the @ factors solve the equation

* /- . . . * / - / .
Q" (i, u) = pr (w) (g(z,u,J) ta min Q (J,u )) , V(4 u)
71=1
e Q(i,u) can be shown to be the unique solution of
this equation. Reason: This is Bellman’s equation
for a system whose states are the original states
1,...,n, together with all the pairs (i, u).

e Value iteration:

Q(Z,U) c= Zpij(u> (g(i7u7j> +a min Q(]a ’U/)) , V (Z,U)
j=1

u'eU(j)



Q-LEARNING 11

e Use any probabilistic mechanism to select se-
quence of pairs (ix,ur) |all pairs (i,u) are chosen
infinitely often], and for each k, select j; accord-
ing to pikj(uk)-

o At each k, Q-learning algorithm updates Q(iy, uy)
according to

QUik, ur) = (1 — Yk ik, ur) ) Qir, ur)

+ i (ik, Uk ) <g(ik, Uk, Jjix) +a min  Q(jg, u’))
u' €U (jk)
o Stepsize v (ix,ur) must converge to 0 at proper
rate (e.g., like 1/k).

e Important mathematical point: In the Q-factor
version of Bellman’s equation the order of expec-
tation and minimization is reversed relatively to
the ordinary cost version of Bellman’s equation:

n

) = min > pi(e) (90w, 9) + ad" ()
j=1
e Q-learning can be shown to converge to true/exact
Q-factors (a sophisticated proof).

e Major drawback: The large number of pairs (i, u)
- no function approximation is used.



Q-FACTOR APROXIMATIONS

e Introduce basis function approximation for Q-
factors:

Q(i,u,m) = ¢(i,u)'r

e We cannot use LSPE/LSTD because the Q-
factor Bellman equation involves minimization /multiple
controls.

e An optimistic version of LSPE(0) is possible:

e Generate an infinitely long sequence {(ix,us) |
k=0,1,...}.

e At iteration k, given r, and state/control (i, uy):

(1) Simulate next transition (iy,ixy1) using the
transition probabilities p;, ;(ug).

(2) Generate control uy; from the minimization

~

Ug41 = arg min Q(ik—l—17u7rk)
ueU (igy1)

(3) Update the parameter vector via

k

rk+1:argrr2§i}1§s E (qb(it,Ut)/T
t=0

, 2
— g(it, ut, it+1) — Oﬁ¢(®t+1, ut+1)/’f‘k)



Q-LEARNING FOR OPTIMAL STOPPING

e Not much is known about convergence of opti-
mistic LSPE(0).

e Major difficulty is that the projected Bellman
equation for ()-factors may not be a contraction,
and may have multiple solutions or no solution.

e There is one important case, optimal stop-
ping, where this difficulty does not occur.

e Given a Markov chain with states {1,...,n},
and transition probabilities p;;. We assume that
the states form a single recurrent class, with steady-
state distribution vector & = (&1,...,&n).

e At the current state 7, we have two options:
— Stop and incur a cost ¢(%), or
— Continue and incur a cost g(7, j), where j is

the next state.

e ()-factor for the continue action:

Qi) = 3~ piy (90 j)+amin {e(), Q) } ) A(FQ)()
j=1
e Major fact: F'is a contraction of modulus «

with respect to norm || - ||¢.



LSPE FOR OPTIMAL STOPPING

e Introduce -factor approximation

~

QUi,r) = (i)'

e PVI for ()-factors:

(I)’I“;H_l — HF((I)Tk)

o LSPE
" 1
Tht1 = (Z ¢(’it)¢(’it)’>
k
Z o(i¢) (g(z’t, it+1) + ozmin{c(itﬂ), ¢(it+1)/rk})

e Simpler version: Replace the term ¢(iz41)/'7%
by ¢(it+1)'re. The algorithm still converges to
the unique fixed point of ITF (see H. Yu and D.
P. Bertsekas, “A Least Squares Q-Learning Algo-
rithm for Optimal Stopping Problems”).



