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6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

e Discounted problems - Approximate policy eval-
uation/policy improvement

Indirect approach - The projected equation
Contraction properties - Error bounds

PVI (Projected Value Iteration)

LSPE (Least Squares Policy Evaluation)
Tetris - A case study



POLICY EVALUATION/POLICY IMPROVEMENT

Guess Initial Policy

l

Evaluate Approximate Cost

) Approximate Policy
Ju(r) = ®r Using Simulation Evaliation

l

«— Generate “Improved” Policy i Policy Improvement

e Linear cost function approximation
J(r) = or

where @ is full rank n x s matrix with columns
the basis functions, and ith row denoted ¢(z)’.

e Policy “improvement”

fi(i) = arg min, > pij () (g(i, u, §) + ad(4)'r)
j=1

e Indirect methods find ®r by solving a projected
equation.



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

n

| 7]l = \ S o (),

1=1

where v is a vector of positive weights v1,...,vy,.

e Let II denote the projection operation onto
S={Pr|reRs}
with respect to this norm, i.e., for any J € R,
IIJ = ®r;

where

J — ®r|l,

rJ = arg min
re¥s

e II and r; can be written explicitly:
I[I=o(P'VD)~1d'V, ry=(®'VO)~-1d'V J,

where V is the diagonal matrix with v;, 2 = 1,...,n,
along the diagonal.



THE PROJECTED BELLMAN EQUATION

e For a fixed policy u to be evaluated, consider
the corresponding mapping 71":

or more compactly,

TJ=g+aPJ

e The solution J,, of Bellman’s equation J =T'J
is approximated by the solution of

¢r = T (Pr)

: Projection
! onS
]

dr = I1T(Dr)

0

S: Subspace spanned by basis functions

Indirect method: Solving a projected
form of Bellman’s equation



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping IIT a
contraction, so II7" has unique fixed point?

e Assuming IIT" has unique fixed point ®r*, how
close is ®r* to J,,7

e Assumption: P has a single recurrent class
and no transient states, i.e., it has steady-state
probabilities that are positive

£ = lim —Zsz:j\zo:z) 0, 5=1,...

N—oco N

e Proposition: IIT is contraction of modulus
« with respect to the weighted Euclidean norm
| - |le, where & = (&1,...,&,) is the steady-state
probability vector. The unique fixed point ®r* of
II'T satisfies

HJM - (I)T*HE < - Hjuuf

1
Vi—az I



ANALYSIS

e Important property of the projection II on S
with weighted Euclidean norm || - ||,,. For all J €
Rr, J €S, the Pythagorean Theorem holds:

| =TI =] = TLT|J3 + [T — J||3

e Proof: Geometrically, (J — ILJ) and (ILJ — J)
are orthogonal in the scaled geometry of the norm
| - ||+, where two vectors x,y € R™ are orthogonal
if Y viziy; = 0. Expand the quadratic in the
RHS below:

| = JIE = I(J = ILT) + (IL] = J)[3

e The Pythagorean Theorem implies that the pro-
jection is nonexpansive, 1.€e.,

T — ILJ ||, < || — J||o, for all J,J € Rn.
To see this, note that

[n(7 =, < [ =D+ 0 =mer = 7l;
= Il =711



PROOF OF CONTRACTION PROPERTY

e Lemma: We have

|Pzlle < llzlle, 2 € R

e Proof of lemma: Let p;; be the components of
P. For all z € k™, we have

mn n n n
1P2l2 =D& [ D piz | <D &Y pis?]
i=1 j=1 =1 j=1
—Zzgzpwz _ijz = HzHgv

7=1 1=1

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property " | &pij =
¢; of the steady-state probabilities.

e Using the lemma, the nonexpansiveness of II,
and the definition 7'J = g + aPJ, we have

MTJ-1TJ||le < |TJ-TJ|l¢ = ol|P(J=T)|le < ol J=J|l¢

for all J,J € R". Hence T is a contraction of
modulus .



PROOF OF ERROR BOUND

e Let ®r* be the fixed point of II7". We have

|7, — ®r+le <

1
= m”‘]ﬂ_ﬂ‘]ﬂ“g

Proof: We have

| — ®r 2 =

12 = 1Ty — TLJ )12 + [T, — @)

< |[Ju — I, |12 et a?||Jy, — (I)T*Hga

where the first equality uses the Pythagorean The-
orem, the second equality holds because J, is the
fixed point of T and ®r* is the fixed point of IIT,
and the inequality uses the contraction property
of II'. From this relation, the result follows.

e Note: The factor 1/4/1 — a? in the RHS can
be replaced by a factor that is smaller and com-
putable. See

H. Yu and D. P. Bertsekas, “New Error Bounds

for Approximations from Projected Linear Equa-
tions,” Report LIDS-P-2797, MIT, July 2008.

Jp — J|12 + | 1T T, — T ($r) |

2
§



PROJECTED VALUE ITERATION (PVI)

e Given the projection property of 1I7', we may
consider the PVI method

(I)Tk_|_1 — HT((I)Tk)

Value lterate
T(Prk) = g + aPPrg

I
Projection
on S

|
Dric4+1

drk
0
S: Subspace spanned by basis functions

e (Question: Can we implement PVI using simu-
lation, without the need for n-dimensional linear
algebra calculations?

e LSPE (Least Squares Policy Evaluation) is a
simulation-based implementation of PVI.



LSPE - SIMULATION-BASED PVI

e PVI ie., ®ripq =T (Pry) can be written as

br — T((I)Tk)’

T'k41 = arg min

reRs &’

from which by setting the gradient to O,

(Z & ¢(’i)¢(73)/> Tht+1 = (Z &i (1) sz’j (9(i,9) + ad(s) i
i=1 j=1

=1

e For LSPE we generate an infinite trajectory
(0,71, ...) and update 7y, after transition (i, 1x+1)

k
<Z Qb(it)cb(it)’) Thtl = (Zqﬁ it)(9(it, te4+1) + ad(it41) Tk))
t=0

e LSPE can equivalently be written as

<Z Eik ¢(i)¢(i)/> Tkl = (Zézk P(1) Zf?ij,k:
i=1 i=1 =1

(906.3) + as()'re) ).

where &; 1, Dijk: empirical frequencies of state i
and transition (¢, 7), based on (ig,...,%%+1).



LSPE INTERPRETATION

e LSPE can be written as PVI with sim. error:
DPri1 = HT((I)Tk) + e

where ej diminishes to 0 as the empirical frequen-
cies & and p;; . approach £ and p;;.

Value lterate Value lterate
T(Prg) =g + aPdrg T(Prg) =g + aPdrg

I I
Projection Projection
on S | _onS
I
Dric+1
Dri+1
)]
"k ®rk  Simulation error
0 0
S: Subspace spanned by basis functions S: Subspace spanned by basis functions

Projected Value lteration (PV|) Least SquareS PO“Cy Evaluation (LSPE)

e C(Convergence proof is simple: Use the law of
large numbers.

e Optimistic LSPE: Changes policy prior to con-
vergence - behavior can be very complicated.



EXAMPLE: TETRIS I

e The state consists of the board position ¢, and
the shape of the current falling block (astronomi-
cally large number of states).

e It can be shown that all policies are proper!!

e Use a linear approximation architecture with
feature extraction

J(@i,r) =Y dm(i)rm.

where r = (r1,...,7s) is the parameter vector and
®m (1) is the value of mth feature associated w/ i.



EXAMPLE: TETRIS II

e Approximate policy iteration was implemented
with the following features:

— The height of each column of the wall
— The difference of heights of adjacent columns
— The maximum height over all wall columns
— The number of “holes” on the wall
— The number 1 (provides a constant offset)
e Playing data was collected for a fixed value
of the parameter vector r (and the corresponding
policy); the policy was approximately evaluated

by choosing r to match the playing data in some
least-squares sense.

e LSPE (its SSP version) was used for approxi-
mate policy evaluation.

e Both regular and optimistic versions were used.

e See: Bertsekas and Ioffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” LIDS Report, 1996. Also
the NDP book.



