MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

e Discounted problems - Approximate policy eval-
uation/policy improvement

Direct approach - Least squares

Batch and incremental gradient methods
Implementation using TD

Optimistic policy iteration

Exploration issues

THEORETICAL BASIS

e If policies are approximately evaluated using an
approximation architecture:

max]j(i,rk)—JMk(i)\Scs, k=0,1,...

e If policy improvement is also approximate,

~

max |(Tye1J) (i, 75)—(TT)(i,m6)] <€, k=0,1,...

e Error Bound: The sequence {uF} generated
by approximate policy iteration satisfies

200
11211_>Solip mzfch(Juk (1) — J*(Z)) < (61—1__ 00;)2

e Typical practical behavior: The method makes
steady progress up to a point and then the iterates

J,x oscillate within a neighborhood of J*.

SIMULATION-BASED POLICY EVALUATION

e Suppose we can implement in a simulator the
improved policy 1z, and want to calculate J; by
simulation.

e Generate by simulation sample costs. Then:
1
M;

m=1

Jr(1) &

c(i,m)

c(i,m) : mth (noisy) sample cost starting from state ¢

e Approximating well each Jz(7) is impractical
for a large state space. Instead, a “compact rep-
resentation” J;(4,7) is used, where r is a tunable
parameter vector.

e Direct approach: Calculate an optimal value r*
of r by a least squares fit

n M;
r* = arg minz Z]c(i,m) — jﬁ(ivr)’2

1=1 m=1

e Note that this is much easier when the archi-
tecture is linear - but this is not a requirement.

SIMULATION-BASED DIRECT APPROACH

] System Simulator -
Least-Squares | g J(j,f)
Optimization
- Decision Generator P
Decision u(i) State i

Cost-to-Go Approximator
Supplies Values J(j,r)

e Simulator: Given a state-control pair (7, u), gen-
erates the next state j using system’s transition
probabilities under policy &z currently evaluated

e Decision generator: Generates the control 7i(7)
of the evaluated policy at the current state ¢

o Cost-to-go approximator: J(j,7) used by the
decision generator and corresponding to preceding
policy (already evaluated in preceding iteration)

e [cast squares optimizer: Uses cost samples c(i, m)
produced by the simulator and solves a least squares
problem to approximate Jy(-,T)

BATCH GRADIENT METHOD 1

e Focus on a batch: an N-transition portion
(0,...,1n) of a simulated trajectory

e We view the numbers

N-—1
at— Zt,UZt) ?:t_|_1), kZO,...,N—l,
t=k

as cost samples, one per initial state ig,...,in_1

e Least squares problem

, N-l N—1 2
m_ini Z ((ig,T Z at—kg Zt 1(1¢), it+1)>

T
k=0

e Gradient iteration
N—1

Fe=T =y) VJ(ir,7)
k=0

o
(j(z'k,?) — 2_: ozt’“g(it,ﬁ(it)»itﬂ))

BATCH GRADIENT METHOD II

e Important tradeoff:

— In order to reduce simulation error and cost
samples for a representatively large subset of
states, we must use a large IV

— To keep the work per gradient iteration small,
we must use a small N

e To address the issue of size of IV, small batches
may be used and changed after one or more iter-
ations

e Then the method becomes susceptible to sim-
ulation noise - requires a diminishing stepsize for
convergence

e This slows down the convergence (which can
be very slow for a gradient method even without
noise)

e Theoretical convergence is guaranteed (with a
diminishing stepsize) under reasonable conditions,
but in practice this is not much of a guarantee

INCREMENTAL GRADIENT METHOD 1

e Again focus on an N-transition portion (ig,...,%N)
of a simulated trajectory.

e The batch gradient method processes the N
transitions all at once, and updates 7 using the
gradient iteration.

e The incremental method updates 7 a total of NV
times, once after each transition.

e After each transition (ig,%x+1) it uses only the
portion of the gradient affected by that transition:

— Evaluate the (single-term) gradient V.J (i, 7)
at the current value of 7 (call it r).

— Sum all the terms that involve the transi-
tion (ig,ix+1), and update rp by making a
correction along their sum:

Tktl =Tk — (Vj(ik, r)d (i,)

k
_ (Z &ktvj(@-t,n)> g(ikaﬁ(ik)aikJrl))

t=0

INCREMENTAL GRADIENT METHOD I1

e After N transitions, all the component gradient
terms of the batch iteration are accumulated.

e BIG difference:

— In the incremental method, 7 is changed while
processing the batch — the (single-term) gra-
dient V.J(i;,7) is evaluated at the most re-
cent value of 7 |after the transition (i, 7¢41)].

— In the batch version these gradients are eval-
uated at the value of 7 prevailing at the be-
ginning of the batch.

e Because 7 is updated at intermediate transi-
tions within a batch (rather than at the end of
the batch), the location of the end of the batch

becomes less relevant.

e Can have very long batches - can have a single
very long simulated trajectory and a single batch.

e The incremental version can be implemented
more flexibly, converges much faster in practice.

e Interesting convergence analysis (beyond our
scope - see Bertsekas and Tsitsiklis, NDP book,
also paper in STAM J. on Optimization, 2000)

TEMPORAL DIFFERENCES - TD(1)

e A mathematically equivalent implementation of
the incremental method.

o It uses temporal difference (TD for short)
dr, = g(’ik,ﬁ(’ik),’ik+1)+&j(ik+1,7)—j(’ika7)7 k< N-2,

dy-1=g(in-1,B(in-1),in) — J(in-1,T)

e Following the transition (ig,ix+1), set

k

Tk+1 = Tk T ’kak Z Ckk_th(it, ’I“t)
t=0

e This algorithm is known as TD(1). In the im-
portant linear case J(i,7) = ¢(i)'r, it becomes
k

Tk+1 = Tk + Vedk Z ak=tp(it)
=0

e A variant of TD(1) is TD(M), A € [0,1]. It sets

k
Tk+1 = Tk + Vedi Z(Oé/\)k_t¢(it)
=0

OPTIMISTIC POLICY ITERATION

e We have assumed so far is that the least squares
optimization must be solved completely for 7.

e An alternative, known as optimistic policy iter-
ation, is to solve this problem approximately and
replace policy p with policy @ after only a few
simulation samples.

e Lixtreme possibility is to replace p with & at the
end of each state transition: After state transition

(ik, ik+1), set

k
Thr1 = Tk + Yed Z(ak)’f—tvj(it, Tt),
t=0

and simulate next transition (ix41,ix+2) using @(ig+1),
the control of the new policy.

e For A = 0, we obtain (the popular) optimistic
TD(0), which has the simple form

Tk+1 = Tk + ’kakVJ(ik, Tk)

e Optimistic policy iteration can exhibit fascinat-

ing and counterintuitive behavior (see the NDP
book by Bertsekas and Tsitsiklis, Section 6.4.2).

THE ISSUE OF EXPLORATION

e To evaluate a policy i, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under pu.

e As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

e This can cause serious errors in the calculation
of the improved control policy .

e This is known as inadequate exploration - a par-
ticularly acute difficulty when the randomness em-
bodied in the transition probabilities is “relatively
small” (e.g., a deterministic system).

e One possibility to guarantee adequate explo-
ration: Frequently restart the simulation and en-
sure that the initial states employed form a rich
and representative subset.

e Another possibility is to artificially introduce
some extra randomization in the simulation, by
occasionally generating transitions that use a ran-
domly selected control rather than the one dic-
tated by the policy pu.

APPROXIMATING Q-FACTORS

e The approach described so far for policy eval-
uation requires calculating expected values for all
controls u € U (i) (and knowledge of p;;(u)).

o Model-free alternative: Approximate (Q-factors
Z u, T me Z u)]) +aJM(J))

and use for policy improvement the minimization

(7) = arg min T, U, T
(i) g 1 U()Q()

e 1 is an adjustable parameter vector and Q (7, u,)
is a parametric architecture, such as

m

Qi,u,r) = Z redk (i, u)

k=1
e (Can use any method for constructing cost ap-
proximations, e.g., TD(M\).

e Use the Markov chain with states (¢, u) - p;; (u(2))
is the transition prob. to (j, (7)), 0 to other (g, u’).

e Major concern: Acutely diminished exploration.

