
MIT OpenCourseWare 
http://ocw.mit.edu 

6.231 Dynamic Programming and Stochastic Control 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

• Undiscounted problems

• Stochastic shortest path problems (SSP)

• Proper and improper policies

• Analysis and computational methods for SSP

• Pathologies of SSP



UNDISCOUNTED PROBLEMS

• System: xk+1 = f(xk, uk, wk)

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{
N−1∑

k=0

g
(
xk, µk(xk), wk

)
}

• Shorthand notation for DP mappings

(TJ)(x) = min
u∈U(x)

E
w

{
g(x, u, w) + J

(
f(x, u, w)

)}
, ∀ x

• For any stationary policy µ

(TµJ)(x) = E
w

{
g
(
x, µ(x), w

)
+ J

(
f(x, µ(x), w)

)}
, ∀ x

• Neither T nor Tµ are contractions in general,
but their monotonicity is helpful.

• SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

− They share features of both.
− Some of the nice theory is recovered because

of the termination state.



SSP THEORY SUMMARY I

• As earlier, we have a cost-free term. state t, a
finite number of states 1, . . . , n, and finite number
of controls, but we will make weaker assumptions.
• Mappings T and Tµ (modified to account for
termination state t):

(TJ)(i) = min
u∈U(i)

[
g(i, u) +

n∑

j=1

pij(u)J(j)

]
, i = 1, . . . , n,

(TµJ)(i) = g
(
i, µ(i)

)
+

n∑

j=1

pij

(
µ(i)

)
J(j), i = 1, . . . , n.

• Definition: A stationary policy µ is called
proper, if under µ, from every state i, there is
a positive probability path that leads to t.

• Important fact: If µ is proper, Tµ is contrac-
tion with respect to some weighted max norm

max
i

1
vi
|(TµJ)(i)−(TµJ ′)(i)| ≤ ρµ max

i

1
vi
|J(i)−J ′(i)|

• T is similarly a contraction if all µ are proper
(the case discussed in the text, Ch. 7, Vol. I).



SSP THEORY SUMMARY II

• The theory can be pushed one step further.
Assume that:

(a) There exists at least one proper policy

(b) For each improper µ, Jµ(i) = ∞ for some i

• Then T is not necessarily a contraction, but:
− J∗ is the unique solution of Bellman’s Equ.
− µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

− limk→∞(T kJ)(i) = J∗(i) for all i

− Policy iteration terminates with an optimal
policy, if started with a proper policy

• Example: Deterministic shortest path problem
with a single destination t.

− States <=> nodes; Controls <=> arcs
− Termination state <=> the destination
− Assumption (a) <=> every node is con-

nected to the destination
− Assumption (b) <=> all cycle costs > 0



SSP ANALYSIS I

• For a proper policy µ, Jµ is the unique fixed
point of Tµ, and T k

µ J → Jµ for all J (holds by the
theory of Vol. I, Section 7.2)

• A stationary µ satisfying J ≥ TµJ for some J
must be proper - true because

J ≥ T k
µ J = P k

µ J +
k−1∑

m=0

Pm
µ gµ

and some component of the term on the right
blows up if µ is improper (by our assumptions).

• Consequence: T can have at most one fixed
point.

Proof: If J and J ′ are two solutions, select µ
and µ′ such that J = TJ = TµJ and J ′ = TJ ′ =
Tµ′J ′. By preceding assertion, µ and µ′ must be
proper, and J = Jµ and J ′ = Jµ′ . Also

J = T kJ ≤ T k
µ′J → Jµ′ = J ′

Similarly, J ′ ≤ J , so J = J ′.



SSP ANALYSIS II

• We now show that T has a fixed point, and also
that policy iteration converges.

• Generate a sequence {µk} by policy iteration
starting from a proper policy µ0.

• µ1 is proper and Jµ0 ≥ Jµ1 since

Jµ0 = Tµ0Jµ0 ≥ TJµ0 = Tµ1Jµ0 ≥ T k
µ1Jµ0 ≥ Jµ1

• Thus {Jµk} is nonincreasing, some policy µ will
be repeated, with Jµ = TJµ. So Jµ is a fixed point
of T .

• Next show T kJ → Jµ for all J , i.e., value it-
eration converges to the same limit as policy iter-
ation. (Sketch: True if J = Jµ, argue using the
properness of µ to show that the terminal cost
difference J − Jµ does not matter.)

• To show Jµ = J∗, for any π = {µ0, µ1, . . .}

Tµ0 · · ·Tµk−1J0 ≥ T kJ0,

where J0 ≡ 0. Take lim sup as k → ∞, to obtain
Jπ ≥ Jµ, so µ is optimal and Jµ = J∗.



SSP ANALYSIS III

• If all policies are proper (the assumption of
Section 7.1, Vol. I), Tµ and T are contractions
with respect to a weighted sup norm.
Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to −1.
Let Ĵ be the corresponding optimal cost vector.
For all µ,

Ĵ(i) = −1+ min
u∈U(i)

n∑

j=1

pij(u)Ĵ(j) ≤ −1+

n∑

j=1

pij

(
µ(i)

)
Ĵ(j)

For vi = −Ĵ(i), we have vi ≥ 1, and for all µ,

n∑

j=1

pij

(
µ(i)

)
vj ≤ vi − 1 ≤ ρ vi, i = 1, . . . , n,

where
ρ = max

i=1,...,n

vi − 1
vi

< 1.

This implies contraction of Tµ and T by the results
of the preceding lecture.



PATHOLOGIES I: DETERM. SHORTEST PATHS

• If there is a cycle with cost = 0, Bellman’s equa-
tion has an infinite number of solutions. Example:

0

0

1
1 2 t

• We have J∗(1) = J∗(2) = 1.

• Bellman’s equation is

J(1) = J(2), J(2) = min
[
J(1), 1].

• It has J∗ as solution.

• Set of solutions of Bellman’s equation:
{
J | J(1) = J(2) ≤ 1

}
.



PATHOLOGIES II: DETERM. SHORTEST PATHS

• If there is a cycle with cost < 0, Bellman’s
equation has no solution [among functions J with
−∞ < J(i) < ∞ for all i]. Example:

0

-1

1
1 2 t

• We have J∗(1) = J∗(2) = −∞.

• Bellman’s equation is

J(1) = J(2), J(2) = min
[
−1 + J(1), 1].

• There is no solution [among functions J with
−∞ < J(i) < ∞ for all i].

• Bellman’s equation has as solution J∗(1) =
J∗(2) = −∞ [within the larger class of functions
J(·) that can take the value −∞ for some (or
all) states]. This situation can be generalized (see
Chapter 3 of Vol. II of the text).



PATHOLOGIES III: THE BLACKMAILER

• Two states, state 1 and the termination state t.

• At state 1, choose a control u ∈ (0, 1] (the
blackmail amount demanded) at a cost −u, and
move to t with probability u2, or stay in 1 with
probability 1 − u2.

• Every stationary policy is proper, but the con-
trol set in not finite.

• For any stationary µ with µ(1) = u, we have

Jµ(1) = −u + (1 − u2)Jµ(1)

from which Jµ(1) = − 1
u

• Thus J∗(1) = −∞, and there is no optimal
stationary policy.

• It turns out that a nonstationary policy is op-
timal: demand µk(1) = γ/(k + 1) at time k, with
γ ∈ (0, 1/2). (Blackmailer requests diminishing
amounts over time, which add to ∞; the proba-
bility of the victim’s refusal diminishes at a much
faster rate.)


