MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING
LECTURE 19
LECTURE OUTLINE

Undiscounted problems

Stochastic shortest path problems (SSP)
Proper and improper policies

Analysis and computational methods for SSP

Pathologies of SSP



UNDISCOUNTED PROBLEMS

e System: xry1 = f(xk, ug, W)

e Cost of a policy m = {uo, p1,.--}

Jr(xo) = lim F {Zg(xk,,uk(xk),wk)}

N —o0 W
k=0,1,... k=0

e Shorthand notation for DP mappings

(TJ)(xr) = min E{g(w,u,w)—i—J(f(m,u,w))}, vV x

uwelU(x) w

e For any stationary policy
(Tu) (@) = E{g(w, p(@),w) + I (f (2, n(z),w)) }, V2

e Neither T' nor 7), are contractions in general,
but their monotonicity is helpful.

e SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

— They share features of both.

— Some of the nice theory is recovered because
of the termination state.



SSP THEORY SUMMARY 1

e As earlier, we have a cost-free term. state ¢, a
finite number of states 1,...,n, and finite number
of controls, but we will make weaker assumptions.

e Mappings T and T, (modified to account for
termination state t):

uwelU(7)

(TJ)(i) = min |g(i,u)+ Y pi(w)JG)|, i=1,...,n,

(T D)) = g (6 0(D)+ > pis (0(0) T(G), i=1,...,n.

e Definition: A stationary policy p is called
proper, if under u, from every state ¢, there is
a positive probability path that leads to t.

e Important fact: If p is proper, 7}, is contrac-
tion with respect to some weighted max norm

max (7)) (1)~ (T")(0)| < pyemax 1.1 (3)—J"(3)

e 7' is similarly a contraction if all 1 are proper
(the case discussed in the text, Ch. 7, Vol. I).



SSP THEORY SUMMARY 11

e The theory can be pushed one step further.
Assume that:

(a) There exists at least one proper policy
(b) For each improper u, J,(i) = oo for some ¢

e Then T is not necessarily a contraction, but:
— J* is the unique solution of Bellman’s Equ.
— p* is optimal if and only if T}« J* =T J*
— limg oo (T*J) (i) = J*(7) for all ¢
— Policy iteration terminates with an optimal
policy, if started with a proper policy
e Eixample: Deterministic shortest path problem
with a single destination ¢.
— States <=> nodes; Controls <=> arcs
— Termination state <=> the destination

— Assumption (a) <=> every node is con-
nected to the destination

— Assumption (b) <=> all cycle costs > 0



SSP ANALYSIS I

e For a proper policy u, J, is the unique fixed

point of T),, and T}¥.J — J,, for all J (holds by the
theory of Vol. I, Section 7.2)

e A stationary u satisfying J > T),J for some J
must be proper - true because

k—1
J>ThJ=PEJ+ > Prg,

m=0
and some component of the term on the right
blows up if p is improper (by our assumptions).

e C(Consequence: 1' can have at most one fixed
point.

Proof: If J and J’ are two solutions, select u
and p’ such that J =TJ =1,J and J' =TJ" =
T, J'. By preceding assertion, p and g/ must be
proper, and J = J, and J' = J,/. Also

J=Tk] <THJ = Ju=J

Similarly, J’ < J,so J = J'.



SSP ANALYSIS II

e We now show that 7" has a fixed point, and also
that policy iteration converges.

e Generate a sequence {ur} by policy iteration
starting from a proper policy ug.

e 1 1s proper and J,, > J,, since

Juo = Luodpuo 2 TJpy = Ty Jpe 2 Tllfl*],uo > Ju

e Thus {J,,} is nonincreasing, some policy p will
be repeated, with J,, =T J,. So J, is a fixed point
of T'.

e Next show T*J — J, for all J, i.e., value it-
eration converges to the same limit as policy iter-
ation. (Sketch: True if J = J,, argue using the
properness of p to show that the terminal cost
difference J — J,, does not matter.)

e To show J, = J*, for any m = {po, p1, ...}
Tho - Ty Jo > TFJy,

where Jg = 0. Take limsup as k£ — oo, to obtain
Jr > Ju, so p is optimal and J, = J*.



SSP ANALYSIS III

e If all policies are proper (the assumption of
Section 7.1, Vol. I), T, and T are contractions
with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the
transition probabilities are the same as in the orig-
inal, but the transition costs are all equal to —1.
Let J be the corresponding optimal cost vector.
For all p,

n

J(0) = =1+ min > pig(u)I() < =14 pi (1) T(5)

For v; = —j(i), we have v; > 1, and for all u,

1
Y <1

1=1,...,n (%

This implies contraction of 7}, and I' by the results
of the preceding lecture.



PATHOLOGIES I: DETERM. SHORTEST PATHS

e If there is a cycle with cost = 0, Bellman’s equa-
tion has an infinite number of solutions. Example:

0
|
ofliBos0
0

e We have J*(1) = J*(2) =1

e Bellman’s equation is

J(1) = J(2), J(2) = min|J(1),1].

e It has J* as solution.

e Set of solutions of Bellman’s equation:

{J]J(1)=J(2) <1}.



PATHOLOGIES II: DETERM. SHORTEST PATHS

e If there is a cycle with cost < 0, DBellman’s
equation has no solution [among functions J with
—o00 < J(1) < oo for all 7]. Example:

ONIBORSNC

e We have J*(1) = J*(2) = —oc.

e Bellman’s equation is

J(1) = J(2), J(2) = min|—1+ J(1),1].

e There is no solution |[among functions J with
—o0 < J(i) < oo for all 7).

e Bellman’s equation has as solution J*(1) =
J*(2) = —oo [within the larger class of functions
J(-) that can take the value —oo for some (or

all) states|. This situation can be generalized (see
Chapter 3 of Vol. II of the text).



PATHOLOGIES III: THE BLACKMAILER

e Two states, state 1 and the termination state t.

e At state 1, choose a control v € (0,1] (the
blackmail amount demanded) at a cost —u, and
move to ¢ with probability u2, or stay in 1 with
probability 1 — uZ.

e Lvery stationary policy is proper, but the con-
trol set in not finite.

e For any stationary p with p(1) = u, we have
Ju(1) = —u+ (1= u2)J, (1)

from which J,(1) = _%

e Thus J*(1) = —oo, and there is no optimal
stationary policy.

e It turns out that a nonstationary policy is op-
timal: demand pg(1) = v/(k+ 1) at time k, with
v € (0,1/2). (Blackmailer requests diminishing
amounts over time, which add to oo; the proba-
bility of the victim’s refusal diminishes at a much
faster rate.)



