MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING
LECTURE 17

LECTURE OUTLINE

e We start a four-lecture sequence on advanced
infinite horizon DP

e We allow infinite state space, so the stochastic
shortest path framework cannot be used any more

e The discounted problem is the proper starting
point for this analysis

e The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state)



DISCOUNTED PROBLEMS W/ BOUNDED COST

e Stationary system with arbitrary state space

Lk+1 :f(:ck,uk,wk), k:(),l,...

e Cost of a policy m = {uo, 1, .-}

Jx(xo) = lim E {Z Oé’“g(ivk,/ik(l’k),wk)}

N —oo Wi
k=0,1,... k=0

with a < 1, and for some M, we have |g(z, u, w)| <
M for all (x,u,w)

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(xr) = min E{g(w,u,w)—i—od(f(x,u,w))},‘v’ac

uwelU (x) w

T'J is the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy

(1,7)(@) = B {g(w, n(w), w) + o (@ p(z), )}, Vo



“SHORTHAND” THEORY - A SUMMARY

e Cost function expressions [with Jo(x) = 0]

(@) = 1im (T Ty -+ Ty Jo) (2), Ju(@) = lim (T} Jo)(w)
e DBellman’s equation: J* =TJ* J,=1T,J,

e Optimality condition:

p: optimal <==> T, J*=TJ*

e Value iteration: For any (bounded) J and all

J*(x) = lim (T*J)(z)

k— 00

e Policy iteration: Given u*,

— Policy evaluation: Find J x by solving
S =T 1k
— Policy improvement: Find pf+1 such that

Tuk+1 J’uk = TJMk:



TWO KEY PROPERTIES

e Monotonicity property: For any functions J
and J’ such that J(x) < J/(z) for all x, and any

[
(TJ)(x) < (TJ)(x), V x,

(T ))(@) < (T,) (@),  Va.

IA

e Additivity property: For any J, any scalar
r, and any u

(T(J +re))(z) = (TJ)(x) + ar, Y x,

(Tu(J + re))(z) = (Tpd)(z) + ar, V oz,

where e is the unit function |e(z) = 1].



CONVERGENCE OF VALUE ITERATION

o IfJQEO,

J*(z) = lim (TN Jy)(x), for all x

N — o0

Proof: For any initial state xo, and policy m =
{:u07 M1, .- '}7

Jr(xo) = E ¥ Zoz’fg(a:k,,uk(xk),wk)}

\ k=0

(N1
= b9 Z akg(xknuk(xk)awk)}

\ k=0

Iy { i ogkg(iljk,,uk(xk)vwk)}

k=N

The tail portion satisfies

L { Z @kg(ivkauk(%k)»wk)}

k=N

alN M

<
— 1 -«

Y

where M > |g(z,u,w)|. Take the min over 7 of
both sides. Q.E.D.



BELLMAN’S EQUATION

e The optimal cost function J* satisfies Bellman’s
Eq., i.e. J* =T(J*).

Proof: For all x and IV,
alN M alN M

< (TN ) (@) < JH(a) + T

where Jo(z) = 0 and M > |g(z,u,w)|. Applying
T to this relation, and using Monotonicity and
Additivity,

aN+IN

1l — «

(TJ*)(z) — < (TH+1Jo)(x)

aN+LIN

1l — «

<(TJ*)(x) +

Taking the limit as N — oo and using the fact

lim (TN+LJo)(z) = J*(x)

N — o0

we obtain J* =T J*. Q.E.D.



THE CONTRACTION PROPERTY

e Contraction property: For any bounded func-
tions J and J’, and any pu,

mgx’(TJ)(a:) —(TJ")(z)| < ozmgx’J(:U) — J'(x)

max|(T,J)(z)— (TpJ")(z)| < amax|J(z)—J' (z)|.
Proof: Denote ¢ = maxges|J(x) — J'(z)|. Then
J(x)—c< J(zx) < J(x)+c, vV x

Apply T to both sides, and use the Monotonicity
and Additivity properties:

(TJ)(z)—ac < (TJ)(x) < (TJ)(x)+ac, V&
Hence
(TT)(z) — (TJ")(z)| < ac, V.

Q.E.D.



IMPLICATIONS OF CONTRACTION PROPERTY

e Bellman’s equation J = T'J has a unique solu-
tion, namely J*, and for any bounded J, we have

lim (T*J)(x) = J*(x), Vo

k— o0

Proof: Use
mgx‘(T’“J)(:U) — J*(z)] < mgx‘(TkJ)(:c) — (T*kJ*)(z)]

< oF max|J(z) — J*(z)|

e¢ Convergence rate: For all k,

mgx‘(T’“J)(:U) — J*(z)] < ok m;xx’J(:c) — J*(z)]

e Also, for each stationary u, J, is the unique
solution of J =1T,,J and

lim (TFJ)(x) = J,.(x), V x,

k— o0

for any bounded J.



NEC. AND SUFFICIENT OPT. CONDITION

e A stationary policy p is optimal if and only if
p(x) attains the minimum in Bellman’s equation
for each z; i.e.,

TJ* =T,J*.

Proof: If T'J* =T}, J*, then using Bellman’s equa-
tion (J* = TJ*), we have

J* =T, J*,

so by uniqueness of the fixed point of 7},, we obtain
J* = J,; 1.e., p 1s optimal.

e Conversely, if the stationary policy u is optimal,
we have J* = J,, so

J* =T, J*.

Combining this with Bellman’s equation (J* =
TJ*), we obtain T'J* =1T,J*. Q.E.D.



COMPUTATIONAL METHODS

e Value iteration and variants
— Gauss-Seidel version

— Approximate value iteration

e Policy iteration and variants
— Combination with value iteration
— Modified policy iteration

— Asynchronous policy iteration

e Linear programming
n

maximize g J(7)
i=1

subject to J(i) < g(i,u) +a Y pij(u)J(j), V (i,u)

g=1

e Approximate linear programming: use in place
of J(7) a low-dim. basis function representation

J(i,r) =) rew(i)
k=1

and low-dim. LP (with many constraints)



