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6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

• We start a four-lecture sequence on advanced
infinite horizon DP

• We allow infinite state space, so the stochastic
shortest path framework cannot be used any more

• The discounted problem is the proper starting
point for this analysis

• The central mathematical structure is that the
DP mapping is a contraction mapping (instead of
existence of a termination state)



DISCOUNTED PROBLEMS W/ BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{
N−1∑

k=0

αkg
(
xk, µk(xk), wk

)
}

with α < 1, and for some M , we have |g(x, u, w)| ≤
M for all (x, u, w)
• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{
g(x, u, w) + αJ

(
f(x, u, w)

)}
, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .
• For any stationary policy µ

(TµJ)(x) = E
w

{
g
(
x, µ(x), w

)
+ αJ

(
f(x, µ(x), w)

)}
, ∀ x



“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk J0)(x), Jµ(x) = lim
k→∞

(T k
µ J0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all
x,

J∗(x) = lim
k→∞

(T kJ)(x)

• Policy iteration: Given µk,
− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk



TWO KEY PROPERTIES

• Monotonicity property: For any functions J
and J ′ such that J(x) ≤ J ′(x) for all x, and any
µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

• Additivity property: For any J , any scalar
r, and any µ

(
T (J + re)

)
(x) = (TJ)(x) + αr, ∀ x,

(
Tµ(J + re)

)
(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].



CONVERGENCE OF VALUE ITERATION

• If J0 ≡ 0,

J∗(x) = lim
N→∞

(TNJ0)(x), for all x

Proof: For any initial state x0, and policy π =
{µ0, µ1, . . .},

Jπ(x0) = E

{ ∞∑

k=0

αkg
(
xk, µk(xk), wk

)
}

= E

{
N−1∑

k=0

αkg
(
xk, µk(xk), wk

)
}

+ E

{ ∞∑

k=N

αkg
(
xk, µk(xk), wk

)
}

The tail portion satisfies
∣∣∣∣∣E

{ ∞∑

k=N

αkg
(
xk, µk(xk), wk

)
}∣∣∣∣∣ ≤

αNM

1 − α
,

where M ≥ |g(x, u, w)|. Take the min over π of
both sides. Q.E.D.



BELLMAN’S EQUATION

• The optimal cost function J∗ satisfies Bellman’s
Eq., i.e. J∗ = T (J∗).

Proof: For all x and N ,

J∗(x) − αNM

1 − α
≤ (TNJ0)(x) ≤ J∗(x) +

αNM

1 − α
,

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying
T to this relation, and using Monotonicity and
Additivity,

(TJ∗)(x) − αN+1M

1 − α
≤ (TN+1J0)(x)

≤ (TJ∗)(x) +
αN+1M

1 − α

Taking the limit as N → ∞ and using the fact

lim
N→∞

(TN+1J0)(x) = J∗(x)

we obtain J∗ = TJ∗. Q.E.D.



THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣∣(TJ)(x) − (TJ ′)(x)
∣∣ ≤ α max

x

∣∣J(x) − J ′(x)
∣∣,

max
x

∣∣(TµJ)(x)−(TµJ ′)(x)
∣∣ ≤ α max

x

∣∣J(x)−J ′(x)
∣∣.

Proof: Denote c = maxx∈S

∣∣J(x) − J ′(x)
∣∣. Then

J(x) − c ≤ J ′(x) ≤ J(x) + c, ∀ x

Apply T to both sides, and use the Monotonicity
and Additivity properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence
∣∣(TJ)(x) − (TJ ′)(x)

∣∣ ≤ αc, ∀ x.

Q.E.D.



IMPLICATIONS OF CONTRACTION PROPERTY

• Bellman’s equation J = TJ has a unique solu-
tion, namely J∗, and for any bounded J , we have

lim
k→∞

(T kJ)(x) = J∗(x), ∀ x

Proof: Use

max
x

∣∣(T kJ)(x) − J∗(x)
∣∣ ≤ max

x

∣∣(T kJ)(x) − (T kJ∗)(x)
∣∣

≤ αk max
x

∣∣J(x) − J∗(x)
∣∣

• Convergence rate: For all k,

max
x

∣∣(T kJ)(x) − J∗(x)
∣∣ ≤ αk max

x

∣∣J(x) − J∗(x)
∣∣

• Also, for each stationary µ, Jµ is the unique
solution of J = TµJ and

lim
k→∞

(T k
µ J)(x) = Jµ(x), ∀ x,

for any bounded J .



NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

TJ∗ = TµJ∗.

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa-
tion (J∗ = TJ∗), we have

J∗ = TµJ∗,

so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,
we have J∗ = Jµ, so

J∗ = TµJ∗.

Combining this with Bellman’s equation (J∗ =
TJ∗), we obtain TJ∗ = TµJ∗. Q.E.D.



COMPUTATIONAL METHODS

• Value iteration and variants
− Gauss-Seidel version
− Approximate value iteration

• Policy iteration and variants
− Combination with value iteration
− Modified policy iteration
− Asynchronous policy iteration

• Linear programming

maximize
n∑

i=1

J(i)

subject to J(i) ≤ g(i, u) + α
n∑

j=1

pij(u)J(j), ∀ (i, u)

• Approximate linear programming: use in place
of J(i) a low-dim. basis function representation

J̃(i, r) =
m∑

k=1

rkwk(i)

and low-dim. LP (with many constraints)


