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6.231 DYNAMIC PROGRAMMING
LECTURE 16
LECTURE OUTLINE

e C(Control of continuous-time Markov chains —
Semi-Markov problems

e Problem formulation — Equivalence to discrete-
time problems

e Discounted problems

e Average cost problems



CONTINUOUS-TIME MARKOV CHAINS

e Stationary system with finite number of states
and controls

e State transitions occur at discrete times

e Control applied at these discrete times and stays
constant between transitions

e Time between transitions is random

e Cost accumulates in continuous time (may also
be incurred at the time of transition)

e [Example: Admission control in a system with
restricted capacity (e.g., a communication link)

Customer arrivals: a Poisson process

Customers entering the system, depart after
exponentially distributed time

Upon arrival we must decide whether to ad-
mit or to block a customer

There is a cost for blocking a customer

For each customer that is in the system, there
is a customer-dependent reward per unit time

Minimize time-discounted or average cost



PROBLEM FORMULATION

e x(t) and u(t): State and control at time ¢
o t;: Time of kth transition (tp = 0)

o v =ux(tr); xz(t) =xp for tp <t <tpys.
o up=u(ty); u(t)=wug forty <t <tpy1.

e No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij(T,u) = P{thp1—tx <7, T = J | ox = 0, up, = u}
e Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{zr41 =j | or = 1, up = u} = lim Qq;(7,u)

T— 00

(2) The Cumulative Distribution Function (CDF)
of T given i, j,u is (assuming p;;(u) > 0)

Qij(T,u)

P{thrl_tk <T \ Tk =1, Tht1 = J, Uk = U} —
pij(u)

Thus, Qi;(7,u) can be viewed as a “scaled CDF”



EXPONENTIAL TRANSITION DISTRIBUTIONS

e Important example of transition distributions:

Qij(7,u) = pij(u) (1 — e=viWT),

where p;;(u) are transition probabilities, and v;(u)
is called the transition rate at state <.

e Interpretation: If the system is in state 2 and
control u is applied

— the next state will be j with probability p;;(u)

— the time between the transition to state i
and the transition to the next state j is ex-
ponentially distributed with parameter v;(u)
(independently of j):

P{transition time interval > 7 |i,u} = e~vi(W7

e The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the present).

e Without the memoryless property, the Markov
property holds only at the times of transition.



COST STRUCTURES

e There is cost g(i,u) per unit time, i.e.

g(t,u)dt = the cost incurred in time dt

e There may be an extra “instantaneous” cost
g(i,u) at the time of a transition (let’s ignore this
for the moment)

e Total discounted cost of m = { o, pt1, ...} start-
ing from state i (with discount factor G > 0)

tk+1
A}i_r)nooE Z/ azk,uk(xk))dt | To =1

e Average cost per unit time

]\}Enoo E{ - {Z /tk—|-1 xk i g;k))dt | To = ’L}

e We will see that both problems have equivalent
discrete-time versions.




A NOTE ON NOTATION

e The scaled CDF Q;;(7,u) can be used to model
discrete, continuous, and mixed distributions for
the transition time 7.

e Generally, expected values of functions of 7 can
be written as integrals involving d Q;;(7,u). For
example, the conditional expected value of 7 given
1, 7, and u is written as

0 g .
Bir iy = [ r2om

o If Q;;(7,u) is continuous with respect to 7, its
derivative

4Qs;
Gij(T,u) = 227‘7(7»“)

can be viewed as a “scaled” density function. Ex-
pected values of functions of 7 can then be written
in terms of ¢;;(7,u). For example

E{r|i,j,u} = / q; Tu)dT
i (

o If Qi;(7,u)is discontinuous and ° stalrcase—like,”
expected values can be written as summations.




DISCOUNTED PROBLEMS — COST CALCULATION

e For a policy m = {uo, p1, ...}, write

J (i) = E{1st transition cost}+FE{e " Jx, () | i, uo(i)}

where Jr, () is the cost-to-go of the policy m =
{:ulv M2, - - }

e We calculate the two costs in the RHS. The
FE{1st transition cost}, if u is applied at state ¢, is

G(i,u) = E; {E {1st transition cost | j}}

=) pij(w) /OO (/T e‘ﬁtg(i,u)dt) dQi; (7, )
. 0 0 Pij (u>

e Thus the F{lst transition cost} is

n e s
G(iauo(i))zg(iaﬂo(i))Z/ 1 7 dQi (7, uo(9))



COST CALCULATION (CONTINUED)

e Also the expected (discounted) cost from the
next state j is

E{G_BTjwl( ) ‘ 2 ,u()(')}
= Ei{ E{e=P7 | i, p0(0), 1w, (7) | 4, po(0) }

=Y pot) ([ et

pij(w)

where m;;(u) is given by

mij (u) = / e_BTinj (T, u) (< / inj (7’, u) — pij (U>)
0 0

and can be viewed as the “effective discount fac-
tor” [the analog of ap;;(u) in the discrete-time
case].

e So Jr(7) can be written as

Jr (1) = G(i, pro (4 +me 10(7)) Jry (7)



EQUIVALENCE TO AN SSP

e Similar to the discrete-time case, introduce a
stochastic shortest path problem with an artificial
termination state t

e Under control u, from state ¢ the system moves
to state j with probability m;;(u) and to the ter-
mination state ¢ with probability 13" | m;;(u)

e DBellman’s equation: For ¢ =1,...,n,

J*(i) = min |G(i,u) + > mij(u)J*(j)
uwel (7) i

e Analogs of value iteration, policy iteration, and
linear programming.

e If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost g(i,u),
Bellman’s equation becomes

Je(i) = min (i, u) + Gl u) + 3 mi(u)*(j)
u (2 j:].




MANUFACTURER’S EXAMPLE REVISITED

e A manufacturer receives orders with interarrival
times uniformly distributed in [0, Tmax]-

e He may process all unfilled orders at cost K > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
1S n.

e The nonzero transition distributions are

Qil(T, FIH) = Qi(i—l—l)(7_7 Not FIH) — min [1, 7 ]

Tmax

e The one-stage expected cost G is
G (i, Fill) = 0, G (i, Not Fill) = yci,

where

Ool—e BT Tmax 1 _ g—fT
V= Z/ inj(Tv u) :/O ﬁTmaX ar

e There is an “instantaneous” cost

g(i,Fill) = K, g(i, Not Fill) =0



MANUFACTURER’S EXAMPLE CONTINUED

e The “effective discount factors” m;;(u) in Bell-
man’s Equation are

mﬂ(Fill) — mi(z’+1)(NOt Fill) = a,

where

o%e Tmax e—BT 1 — 6—,3Tmax
a = / e PTdQii (T, u) = / dr =
0 0

Tmax ﬁ Tmax

e Bellman’s equation has the form

J*(i) = min| K+aJ*(1), yeit+aJ*(i+1)], i=1,2,...

e As in the discrete-time case, we can conclude
that there exists an optimal threshold 7*:

fill the orders <==> their number 7 exceeds 7*



AVERAGE COST
e Minimize

lim E{iN}E {/OtN g(:c(t),u(t))dt}

assuming there is a special state that is “recurrent
under all policies”

e Total expected cost of a transition

G(i,u) = g(i, u)Ti(u),

where 7;(u): Expected transition time.

e We now apply the SSP argument used for the
discrete-time case. Divide trajectory into cycles
marked by successive visits to n. The cost at (i, u)
is G(i,u) — A*Ti(u), where A\* is the optimal ex-
pected cost per unit time. Each cycle is viewed as
a state trajectory of a corresponding SSP problem
with the termination state being essentially n.

e So Bellman’s Eq. for the average cost problem:

pr(i) = min |G u) = ATilu) + Zpij(U)h*(j)




AVERAGE COST MANUFACTURER’S EXAMPLE

e The expected transition times are

7:(Fill) = 7 (Not Fill) = T”;X

the expected transition cost is

C 1 Tmax

G(i,Fill) =0,  G(i,Not Fill) =

and there is also the “instantaneous” cost

g(i,Fill) = K, g(i, Not Fill) = 0

e DBellman’s equation:

h*(i) = min | K — \* T”;X + b (1),

. Tmax o Tmax

Cl 5 5

+he(i+1)]

e Again it can be shown that a threshold policy
is optimal.



