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6.231 DYNAMIC PROGRAMMING
LECTURE 15

LECTURE OUTLINE

e Average cost per stage problems

e (Connection with stochastic shortest path prob-
lems

e Bellman’s equation
e Value iteration

e Policy iteration



AVERAGE COST PER STAGE PROBLEM

e Stationary system with finite number of states
and controls

e Minimize over policies m = {uo, p1,---}

Jx(xo) = lim 1 E {Zg(aﬁk,uk(l’k),wk)}

N—oco IV W
k=0,1,... k=0

e Important characteristics (not shared by other
types of infinite horizon problems)

— For any fixed K, the cost incurred up to time
K does not matter (only the state that we
are at time K matters)

— If all states “communicate” the optimal cost
is independent of the initial state [if we can
go from ¢ to j in finite expected time, we
must have J*(i) < J*(j)]. So J*(i) = \* for
all 7.

— Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.



CONNECTION WITH SSP

e Assumption: State n is such that for some
integer m > 0, and for all initial states and all
policies, n is visited with positive probability at
least once within the first m stages.

e Divide the sequence of generated states into
cycles marked by successive visits to n.

e FEach of the cycles can be viewed as a state
trajectory of a corresponding stochastic shortest
path problem with n as the termination state.

Artificial Termination State

e Let the cost at ¢ of the SSP be g(¢,u) — \*
e We will show that

Av. Cost Probl. = A Min Cost Cycle Probl. = SSP Probl.



CONNECTION WITH SSP (CONTINUED)

e (Consider a minimum cycle cost problem: Find
a stationary policy p that minimizes the expected
cost per transition within a cycle

where for a fixed p,
Cnn(p) : E{cost from n up to the first return to n}
Npn(p) : E{time from n up to the first return to n}
e Intuitively, optimal cycle cost = A*, so

Crn () = Non ()A* 2 0,

with equality if p is optimal.

e Thus, the optimal ;4 must minimize over u the
expression Chyn (i) — Npn(p)A*, which is the ex-
pected cost of u starting from n in the SSP with
stage costs g(i,u) — \*.



BELLMAN’S EQUATION

e Let h*(7) the optimal cost of this SSP problem
when starting at the nontermination states i =
l,...,n. Then, h*(1),...,h*(n) solve uniquely
the corresponding Bellman’s equation

n—1
h* (1) = Ienl}{l) gliu) = A+ > pij(u)h*(5)| , Vi
u (/ le

e If 11* is an optimal stationary policy for the SSP
problem, we have

e Combining these equations, we have

Athe(i) = min \g(iu) + ) pi(whe(5) |, V4
u 1 =1

o If u*(7) attains the min for each ¢, u* is optimal.



MORE ON THE CONNECTION WITH SSP

e Interpretation of h*(i) as a relative or differen-
tial cost: It is the minimum of

FEA{cost to reach n from ¢ for the first time}

— F{cost if the stage cost were \* and not ¢(i,u)}

e We don’t know A\*, so we can’t solve the aver-
age cost problem as an SSP problem. But similar
value and policy iteration algorithms are possible.

e FExample: A manufacturer at each time:
— Receives an order with prob. p and no order
with prob. 1 — p.

— May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is ¢ > 0.

— Maximum number of orders that can remain
unfilled is n.

— Find a processing policy that minimizes the
total expected cost per stage.



EXAMPLE (CONTINUED)

e State = number of unfilled orders. State O is
the special state for the SSP formulation.

e Dellman’s equation: For states: =0,1,...,n—1

A* + h*(i) = min |K + (1 — p)h*(0) + ph*(1),
ci + (1 —p)h*(2) + ph* (7 + 1)],

and for state n

A+ h*(n) = K+ (1 —p)h*(0) + ph*(1)

e Optimal policy: Process ¢ unfilled orders if

K+(1—p)h*(0)+ph*(1) < ci+(1—p)h*(i)+ph*(i+1).

e Intuitively, h*(¢) is monotonically nondecreas-
ing with ¢ (interpret h*(¢) as optimal costs-to-go
for the associate SSP problem). So a threshold pol-
icy 1s optimal: process the orders if their number
exceeds some threshold integer m*.



VALUE ITERATION

e Natural value iteration method: Generate op-
timal k-stage costs by DP algorithm starting with
any Jo:

Jer1(i) = min, g(i,u) + Y pij(W)Jk(§) |, Vi
u (] I le

o Result: limyg_.o Ji(2)/k = A* for all 4.

e Proof outline: Let J be so generated from the
initial condition Jj = h*. Then, by induction,

Jr(i) = kA* + h*(i), Vi, V k.

On the other hand,

| k(i) — Ji(3)] < .maxn]Jo(j) —h*(§)|, Vi

71=1,...,

since Ji(¢) and J;(¢) are optimal costs for two
k-stage problems that differ only in the terminal
cost functions, which are Jy and h*.



RELATIVE VALUE ITERATION

e The value iteration method just described has
two drawbacks:

— Since typically some components of J di-
verge to oo or —oo, calculating limy_, . Jx(¢)/k
is numerically cumbersome.

— The method will not compute a correspond-
ing differential cost vector h*.

e We can bypass both difficulties by subtracting
a constant from all components of the vector Jj,
so that the difference, call it hj, remains bounded.

e Relative value iteration algorithm: Pick any
state s, and iterate according to

P41 (2) = ulgll}f(lz) g(i,u) + sz‘j(u)hk(j)
j=1

- nin g(s,u) + > psi(whi(j) |, Vi
u S le

e Then we can show hp — h* (under an extra
assumption).



POLICY ITERATION

e At the typical iteration, we have a stationary
pr.

e Policy evaluation: Compute A\ and hk(7) of u*,
using the n + 1 equations h*(n) = 0 and

Ab (i) = g (i, 18 () + D pi (E ()RR (), Vi

e Policy improvement: Find for all ¢

,uk+1(i) — arg 1”€nl}r(1) g(i, ’LL) + Zpij (u)hk(])
uel (i =1

o If \etl = Ak and hk+1(7) = h*(i) for all ¢, stop;
otherwise, repeat with p*+! replacing u”.

e Result: For each k, we either have A+l < \k
or

Aokl = Nk pREL(G) < RE(), i=1,...,n.

The algorithm terminates with an optimal policy.



