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6.231 DYNAMIC PROGRAMMING

LECTURE 14

LECTURE OUTLINE

e Review of stochastic shortest path problems

e Computational methods
— Value iteration
— Policy iteration

— Linear programming

e Discounted problems as special case of SSP



STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system: States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;;(u)
— Control constraints u € U(1)

— Cost of policy m = {uo, p1,- ..} is

J=(i) = lim E { 2_: g(xk,,uk(a:k))| Ty = z}
k=0

N — o0

— Optimal policy if J (i) = J*(i) for all i.
— Special notation: For stationary policies m =
{w, u, ...}, we use J,(7) in place of J ().

e Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more that m
stages; for all 7, we have

pr = max Plx, #t|zo=1i,7} <1

1=1,....,n



MAIN RESULT

e Given any initial conditions Jo(1),...,Jo(n),
the sequence Ji(7) generated by value iteration

Jera(i) = min g(i,u) + > pis(w) k()| , Vi
u 7 j:]_

converges to the optimal cost J*(i) for each .

e Bellman’s equation has J*(7) as unique solution:

J* (1) ZUIGH('}% g(i,u) + Y pij(w)J=(j)|, Vi
j=1

e A stationary policy u is optimal if and only
if for every state i, u(¢) attains the minimum in
Bellman’s equation.

e Key proof idea: The “tail” of the cost series,

o

Z E{g(zk, pr(zr)) }

k=mK

vanishes as K increases to oo.



BELLMAN’S EQUATION FOR A SINGLE POLICY

e Consider a stationary policy u

e J,(i),7=1,...,n, are the unique solution of
the linear system of n equations

e Proof: This is just Bellman’s equation for a
modified /restricted problem where there is only
one policy, the stationary policy u, i.e., the control
constraint set at state i is U(7) = {u(i)}

e The equation provides a way to compute J,,(7),
1 = 1,...,n, but the computation is substantial

for large n [O(n3)]

e For large n, value iteration may be preferable.
(Typical case of a large linear system of equations,
where an iterative method may be better than a
direct solution method.)



POLICY ITERATION

e It generates a sequence ul, 2, ... of stationary
policies, starting with any stationary policy uV.

e At the typical iteration, given u*, we perform
a policy evaluation step, that computes the J x (7)
as the solution of the (linear) system of equations

J@) = g6 @)+ _pi (HED)I(G): i=1,00m,

in the n unknowns J(1),...,J(n). We then per-
form a policy improvement step, which computes
a new policy puF+1 as

pk+1(7) = arg ren(}r(1> g(t,u) + qujj(’U/)J’uk ()|, Vi
u 1 ]:1

e The algorithm stops when J (i) = J k+1 (i) for
all ¢

e Note the connection with the rollout algorithm,
which is just a single policy iteration



JUSTIFICATION OF POLICY ITERATION

e We can show thatJ k41 (i) < J,x () for all i,k

e Fix k£ and consider the sequence generated by

JN+1( ) g 1 ,ulH_1 _" pr k+1 (])
where Jo(i) = J x(z). We have

Jo(2) = g (i, pk (7)) + Zpij (1% (2)) Jo(5)

> g (i, pkt1(i) +me k+1(4)) Jo(4) = Ji(4)
Using the monotonicity property of DP,
Jo(i) > Ji(i) = - = In(i) = Inga(i) = -+, Vi

Since Jn(i) — J k+1(i) as N — oo, we obtain
J,uk (2) = Jo(2) > J,uk+1 () for all 7. Also if J,uk (1) =
J k+1(2) for all ¢, J x solves Bellman’s equation
and is therefore equal to J*

e A policy cannot be repeated, there are finitely
many stationary policies, so the algorithm termi-
nates with an optimal policy



LINEAR PROGRAMMING

e We claim that J* is the “largest” J that satisfies
the constraint

J(i) < gliyu) + Y pij(w) (), (1)

g=1

foralli=1,...,n and u € U(7).

e Proof: If we use value iteration to generate a se-
quence of vectors Ji = (Jx(1),..., Jk(n)) starting
with a Jp such that

Jo(i) < min, g(i,u) + Y pij(w)o(j)|, Vi
u (] j:]_

Then, Ji(i) < Jgs1(7) for all £k and ¢ (mono-
tonicity property of DP) and Jy — J*, so that
Jo(2) < J*(7) for all 4.

e SoJ* = (J*(1),...,J*(n)) is the solution of the
linear program of maximizing > ., J(i) subject
to the constraint (1).



LINEAR PROGRAMMING (CONTINUED)

12k

J2)=gR,u")+p,

J2)=g2u)+ py(1)+p 0 Q)

JE= (I#(1).J*%2)

(@HT(1)+pophHI2) ) 2 >
J(H=g,u?)+ p @A) +p ,HIQ)

J(=g(uh)+pHI1) +p Q)

I

e Drawback: For large n the dimension of this
program is very large. Furthermore, the num-
ber of constraints is equal to the number of state-
control pairs.



DISCOUNTED PROBLEMS

e Assume a discount factor o < 1.

e Conversion to an SSP problem.

Pij(u) a Pij(u)

() G e an@{(GY (G e

pji(w) w
l1-a l-a

e Value iteration converges to J* for all initial Jy:

Ji+1(1) = 1"En(}r(1) g(i,u) —I—OzZpij(u)Jk(j) , V1
u 1 I j:l

e J* is the unique solution of Bellman’s equation:

() = min Jg(i,w)+a) pi) ()|, Vi
Uu 1 j:].




DISCOUNTED PROBLEMS (CONTINUED)

e Policy iteration converges finitely to an optimal
policy, and linear programming works.

e [xample: Asset selling over an infinite horizon.
If accepted, the offer x of period k, is invested at
a rate of interest r.

e DBy depreciating the sale amount to period 0
dollars, we view (1 + r)~Fkxy as the reward for
selling the asset in period k at a price xx, where
r > 0 is the rate of interest. So the discount factor

isa=1/(1+r).

e J* is the unique solution of Bellman’s equation

E{J(w)}

1+

J*(x) = max |z,

e An optimal policy is to sell if and only if the cur-
rent offer xj is greater than or equal to &, where

E{J*(w)}
1+7r

o =



