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LECTURE 13

LECTURE OUTLINE

Infinite horizon problems

Stochastic shortest path problems
Bellman’s equation

Dynamic programming — value iteration

Examples



TYPES OF INFINITE HORIZON PROBLEMS

e Same as the basic problem, but:
— The number of stages is infinite.

— The system is stationary.

e Total cost problems: Minimize

Jx(xo) = lim E {Z @kg(wknuk(xk),wk)}

N —oo Wi
k=0,1,... k=0

— Stochastic shortest path problems (a = 1,
finite-state system with a termination state)

— Discounted problems (a < 1, bounded cost
per stage)

— Discounted and undiscounted problems with
unbounded cost per stage

e Average cost problems

o1 N1

k=0,1,... k=0



PREVIEW OF INFINITE HORIZON RESULTS

e Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

e [llustration: Let @ = 1 and Jy(x) denote the
optimal cost of the IN-stage problem, generated
after N DP iterations, starting from Jp(z) =0

Jk—|—1(x) — é%l?)g{g(x,u,w) T Jk(f(ZU?uaw))}v Vo

e Typical results for total cost problems:

J*(z) = lim Jy(z), V x

N — o0

J*(z) = rrg?)E{g(a:,u,w) + J*(f(z,u,w)) }, Va
ucU(x) w

(Bellman’s Equation). If u(x) minimizes in Bell-

man’s Eq., the policy {u, y, ...} is optimal.

e Bellman’s Eq. always holds. The other re-
sults are true for SSP (and bounded/discounted;
unusual exceptions for other problems).



STOCHASTIC SHORTEST PATH PROBLEMS

e Assume finite-state system: States 1,...,n and
special cost-free termination state ¢

— Transition probabilities p;;(u)
— Control constraints u € U(1)

— Cost of policy m = {uo, p1,- ..} is

J=(i) = lim E { 2_: g(xk,,uk(a:k))| Ty = z}
k=0

N — o0

— Optimal policy if J (i) = J*(i) for all i.
— Special notation: For stationary policies m =
{w, u, ...}, we use J,(7) in place of J ().

e Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more that m
stages; for all 7, we have

pr = max Plx, #t|zo=1i,7} <1

1=1,....,n



FINITENESS OF POLICY COST-TO-GO FUNCTIONS

o Let
0 = max Pr.

Note that pr depends only on the first m compo-
nents of the policy 7, so that p < 1.

e For any m and any initial state ¢

P{xom #t|xo =i, 7} = P{xom £t | xm #t, xo =14, 7}
X P{xm #t|x0o=1i,71} < p°

and similarly

P{xgm #t|xo=1i,7} < pk, i=1,...,n

e So E{Cost between times km and (k+ 1)m —1 }

< mp* max [g(i,u)]

and ueU (1)

[ Tx()] <> mp* max [g(i,u)| = % _max [g(i,u)]
k=0 wel (1) P e



MAIN RESULT

e Given any initial conditions Jo(1),...,Jo(n),
the sequence Ji(7) generated by the DP iteration

uelU (1)

Ji41(7) = min g(i,U)+Zpij(U)Jk(j) ) Vi

converges to the optimal cost J*(i) for each .

e Bellman’s equation has J*(7) as unique solution:

J* (1) ZUIGH('}% g(i,u) + Y pij(w)J=(j)|, Vi
j=1

e A stationary policy u is optimal if and only
if for every state i, u(¢) attains the minimum in
Bellman’s equation.

e Key proof idea: The “tail” of the cost series,

o

Z E{g(zk, pr(zr)) }

k=mK

vanishes as K increases to oo.



OUTLINE OF PROOF THAT Jy — J*

e Assume for simplicity that Jo(¢) = 0 for all 4,
and for any K > 1, write the cost of any policy 7
as

mK-—1 o0

Jr(z0) = Z E{g(zk, () | + Z E{g(zk, ur(z)) }

k=0 k=mK

mK-—1 o0

< Z L {g(xkaﬂk(xk))} + Z pPmmax |g(, u)

1,U
k=0 k=K

Take the minimum of both sides over 7 to obtain

K

J*(xo) < Ik (o) + %pmmax lg(7,u)].

Similarly, we have

K

T (w0) = 1= mmax|g(i, u)| < J*(zo).

It follows that limg .o Jmi (xo) = J*(x0).

)
e It can be seen that J,k(xo) and Jnx+tx(xo0)
converge to the same limit for £ = 1
SO JN(CUQ) — J*(ZIZ’Q)



EXAMPLE 1

e Minimizing the F{Time to Termination}: Let

g(t,u) =1, Vi=1,...,n, uecU(®)

e Under our assumptions, the costs J*(7) uniquely
solve Bellman’s equation, which has the form

Je(i)= min |14 py(u)J*(G)|, i=1,...,n
j=1

uelU (1)

e In the special case where there is only one con-
trol at each state, J*(¢) is the mean first passage
time from ¢ to t. These times, denoted m;, are the
unique solution of the equations

mq;zl—l—Zpijmj, 1=1,...,n.
j=1



EXAMPLE 11

e A spider and a fly move along a straight line.

e The fly moves one unit to the left with proba-
bility p, one unit to the right with probability p,
and stays where it is with probability 1 — 2p.

e The spider moves one unit towards the fly if its
distance from the fly is more that one unit.

e If the spider is one unit away from the fly, it
will either move one unit towards the fly or stay
where it is.

e If the spider and the fly land in the same posi-
tion, the spider captures the fly.

e The spider’s objective is to capture the fly in
minimum expected time.

e This is an SSP w/ state = the distance be-
tween spider and fly (¢ = 1,...,n and t = 0 the
termination state).

e There is control choice only at state 1.



EXAMPLE II (CONTINUED)

e For M = move, and M = don’t move

pii(M) =2p, pio(M)=1-2p,

pi2(M)=p, pu(M)=1-2p, pio(M)=np,
pii =D,  Di(i—1) = 1=2p,  Di(i—2) = D, 1> 2,

with all other transition probabilities being O.

e DBellman’s equation:
J*(1) = 1+pJ*(0)+(1-2p) J*(i—1)+pJ*(i—2), > 2

J*(1) = 1+min|2pJ*(1), pJ*(2) + (1 — 2p)J*(1)]
w/ J*(0) = 0. Substituting J*(2) in Eq. for J*(1),

P (1 —=2p)J=*(1)

e Work from here to find that when one unit away
from the fly it is optimal not to move if and only

if p>1/3.



