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6.231 DYNAMIC PROGRAMMING

LECTURE 13

LECTURE OUTLINE

• Infinite horizon problems

• Stochastic shortest path problems

• Bellman’s equation

• Dynamic programming – value iteration

• Examples



TYPES OF INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:
− The number of stages is infinite.
− The system is stationary.

• Total cost problems: Minimize

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{
N−1∑

k=0

αkg
(
xk, µk(xk), wk

)
}

− Stochastic shortest path problems (α = 1,
finite-state system with a termination state)

− Discounted problems (α < 1, bounded cost
per stage)

− Discounted and undiscounted problems with
unbounded cost per stage

• Average cost problems

lim
N→∞

1
N

E
wk

k=0,1,...

{
N−1∑

k=0

g
(
xk, µk(xk), wk

)
}



PREVIEW OF INFINITE HORIZON RESULTS

• Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

• Illustration: Let α = 1 and JN (x) denote the
optimal cost of the N -stage problem, generated
after N DP iterations, starting from J0(x) ≡ 0

Jk+1(x) = min
u∈U(x)

E
w

{
g(x, u, w) + Jk

(
f(x, u, w)

)}
, ∀ x

• Typical results for total cost problems:

J∗(x) = lim
N→∞

JN (x), ∀ x

J∗(x) = min
u∈U(x)

E
w

{
g(x, u, w) + J∗

(
f(x, u, w)

)}
, ∀ x

(Bellman’s Equation). If µ(x) minimizes in Bell-
man’s Eq., the policy {µ, µ, . . .} is optimal.

• Bellman’s Eq. always holds. The other re-
sults are true for SSP (and bounded/discounted;
unusual exceptions for other problems).



STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij(u)
− Control constraints u ∈ U(i)
− Cost of policy π = {µ0, µ1, . . .} is

Jπ(i) = lim
N→∞

E

{
N−1∑

k=0

g
(
xk, µk(xk)

)∣∣∣ x0 = i

}

− Optimal policy if Jπ(i) = J∗(i) for all i.
− Special notation: For stationary policies π =

{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more that m
stages; for all π, we have

ρπ = max
i=1,...,n

P{xm %= t | x0 = i, π} < 1



FINITENESS OF POLICY COST-TO-GO FUNCTIONS

• Let
ρ = max

π
ρπ.

Note that ρπ depends only on the first m compo-
nents of the policy π, so that ρ < 1.
• For any π and any initial state i

P{x2m != t | x0 = i, π} = P{x2m != t | xm != t, x0 = i, π}

× P{xm != t | x0 = i, π} ≤ ρ2

and similarly

P{xkm %= t | x0 = i, π} ≤ ρk, i = 1, . . . , n

• So E{Cost between times km and (k + 1)m − 1 }

≤ mρk max
i=1,...,n
u∈U(i)

∣∣g(i, u)
∣∣

and

∣∣Jπ(i)
∣∣ ≤

∞∑

k=0

mρk max
i=1,...,n
u∈U(i)

∣∣g(i, u)
∣∣ =

m
1 − ρ

max
i=1,...,n
u∈U(i)

∣∣g(i, u)
∣∣



MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n),
the sequence Jk(i) generated by the DP iteration

Jk+1(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)Jk(j)



 , ∀ i

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

J∗(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)J∗(j)



 , ∀ i

• A stationary policy µ is optimal if and only
if for every state i, µ(i) attains the minimum in
Bellman’s equation.

• Key proof idea: The “tail” of the cost series,

∞∑

k=mK

E
{
g
(
xk, µk(xk)

)}

vanishes as K increases to ∞.



OUTLINE OF PROOF THAT JN → J∗

• Assume for simplicity that J0(i) = 0 for all i,
and for any K ≥ 1, write the cost of any policy π
as

Jπ(x0) =

mK−1∑

k=0

E
{

g
(
xk, µk(xk)

)}
+

∞∑

k=mK

E
{

g
(
xk, µk(xk)

)}

≤
mK−1∑

k=0

E
{

g
(
xk, µk(xk)

)}
+

∞∑

k=K

ρkm max
i,u

|g(i, u)|

Take the minimum of both sides over π to obtain

J∗(x0) ≤ JmK(x0) +
ρK

1 − ρ
mmax

i,u
|g(i, u)|.

Similarly, we have

JmK(x0) −
ρK

1 − ρ
mmax

i,u
|g(i, u)| ≤ J∗(x0).

It follows that limK→∞ JmK(x0) = J∗(x0).

• It can be seen that JmK(x0) and JmK+k(x0)
converge to the same limit for k = 1, . . . ,m − 1,
so JN (x0) → J∗(x0)



EXAMPLE I

• Minimizing the E{Time to Termination}: Let

g(i, u) = 1, ∀ i = 1, . . . , n, u ∈ U(i)

• Under our assumptions, the costs J∗(i) uniquely
solve Bellman’s equation, which has the form

J∗(i) = min
u∈U(i)



1 +
n∑

j=1

pij(u)J∗(j)



 , i = 1, . . . , n

• In the special case where there is only one con-
trol at each state, J∗(i) is the mean first passage
time from i to t. These times, denoted mi, are the
unique solution of the equations

mi = 1 +
n∑

j=1

pijmj , i = 1, . . . , n.



EXAMPLE II

• A spider and a fly move along a straight line.

• The fly moves one unit to the left with proba-
bility p, one unit to the right with probability p,
and stays where it is with probability 1 − 2p.

• The spider moves one unit towards the fly if its
distance from the fly is more that one unit.

• If the spider is one unit away from the fly, it
will either move one unit towards the fly or stay
where it is.

• If the spider and the fly land in the same posi-
tion, the spider captures the fly.

• The spider’s objective is to capture the fly in
minimum expected time.

• This is an SSP w/ state = the distance be-
tween spider and fly (i = 1, . . . , n and t = 0 the
termination state).

• There is control choice only at state 1.



EXAMPLE II (CONTINUED)

• For M = move, and M = don’t move

p11(M) = 2p, p10(M) = 1 − 2p,

p12(M) = p, p11(M) = 1 − 2p, p10(M) = p,

pii = p, pi(i−1) = 1−2p, pi(i−2) = p, i ≥ 2,

with all other transition probabilities being 0.

• Bellman’s equation:

J∗(i) = 1+pJ∗(i)+(1−2p)J∗(i−1)+pJ∗(i−2), i ≥ 2

J∗(1) = 1+min
[
2pJ∗(1), pJ∗(2)+ (1− 2p)J∗(1)

]

w/ J∗(0) = 0. Substituting J∗(2) in Eq. for J∗(1),

J∗(1) = 1+min
[
2pJ∗(1),

p

1 − p
+

(1 − 2p)J∗(1)
1 − p

]
.

• Work from here to find that when one unit away
from the fly it is optimal not to move if and only
if p ≥ 1/3.


